−4x2 | ||
∫√1−4x2dx=x√1−4x2−∫ | dx | |
√1−4x2 |
1−4x2 | 1 | |||
∫√1−4x2dx=x√1−4x2−∫ | dx+∫ | dx | ||
√1−4x2 | √1−4x2 |
1 | ||
2∫√1−4x2dx=x√1−4x2+∫ | dx | |
√1−4x2 |
1 | t2−1 | ||
x = | |||
2 | t2+1 |
1 | t2+1 | 2 | ||||
x = | ( | − | ) | |||
2 | t2+1 | t2+1 |
1 | 1 | |||
x = | − | |||
2 | t2+1 |
2t | ||
dx = | dt | |
(t2+1)2 |
2 | ||
√1−4x2=(1−(1− | ))t | |
t2+1 |
2t | ||
√1−4x2= | ||
t2+1 |
2t | 2t | ||
∫ | dt | ||
(t2+1) | (t2+1)2 |
4t2 | ||
∫ | dt | |
(t2+1)3 |
4t | t | 1 | ||||
∫t | dt = − | +∫ | dt | |||
(t2+1)3 | (t2+1)2 | (t2+1)2 |
4t2 | t | 1+t2 | 1 | (−2t) | ||||||
∫ | dt = − | +∫ | dt +∫ | t | dt | |||||
(t2+1)3 | (t2+1)2 | (t2+1)2 | 2 | (t2+1)2 |
4t2 | t | 1 | 1 | t | |||||
∫ | dt = − | +∫ | dt + | − | |||||
(t2+1)3 | (t2+1)2 | t2+1 | 2 | t2+1 |
1 | 1 | |||
∫ | dt | |||
2 | t2+1 |
4t2 | t | 1 | t | 1 | 1 | ||||||
∫ | dt = − | + | + | ∫ | dt | ||||||
(t2+1)3 | (t2+1)2 | 2 | t2+1 | 2 | t2+1 |
4t2 | t | 1 | t | 1 | |||||
∫ | dt = − | + | + | arctg(t)+C | |||||
(t2+1)3 | (t2+1)2 | 2 | t2+1 | 2 |
4t2 | t | 1 | 1 | 1 | ||||||
∫ | dt = | ( | − | )+ | arctg(t)+C | |||||
(t2+1)3 | t2+1 | 2 | t2+1 | 2 |
4t2 | 1 | 2t | 1 | 1 | 1 | ||||||
∫ | dt = | ( | − | )+ | arctg(t)+C | ||||||
(t2+1)3 | 2 | t2+1 | 2 | t2+1 | 2 |
4t2 | 1 | 1 | √1−4x2 | |||||
∫ | dt = | x√1−4x2+ | arctg( | )+C | ||||
(t2+1)3 | 2 | 2 | 1−2x |
1 | ||
1) ∫√1−4x2dx= | ∫√1−t2dt=.. | |
2 |
1−t2 | 1 | −t2 | ||||
J= ∫√1−t2 dt=∫ | =∫ | dt +∫ | dt= | |||
√1−t2 | √1−t2 | √1−t2 |
1 | −2t | |||
=arcsin(t)+ | ∫t* | dt = całkę przez części | ||
2 | √1−t2 |
−2t | −2t | |||
[u=t, du=dt, dv= | dt , v=∫ | dt⇔v=2√1−t2] | ||
√1−t2 | √1−t2 |
1 | −2t | 1 | ||||
3) J1= | ∫t* | dt = | *[t*2√1−t2−∫2√1−t2dt]=t√1−t2−∫√1−t2 dt | |||
2 | √1−t2 | 2 |
1 | 1 | |||
∫√1−t2dt= | arcsin(t)+ | t√1−t2 | ||
2 | 2 |
1 | 1 | 1 | ||||
∫√1−4x2dx= | ∫√1−t2}dt= | arcsin(t)+ | t*√1−t2= | |||
2 | 4 | 4 |
1 | 1 | |||
= | arcsin(2x)+ | x√1−4x2+C | ||
4 | 2 |