2x2 | 2y2 | |||
=y i | =x | |||
1+x2 | 1+y2 |
2x2 | 2x2 + 2 − 2 | 2 | ||||
y = | = | = 2 − | ||||
1+x2 | 1+x2 | 1+x2 |
2 | 2 | |||
czyli: 2 = y + | oraz 2 = x + | |||
1+x2 | 1+y2 |
2 | 2 | |||
x + | = y + | |||
1+y2 | 1+x2 |
1+y2 − (1+x2) | ||
x−y = 2* | ||
(1+x2)(1+y2) |
−(x+y)(x−y) | ||
x−y = 2* | ||
(1+x2)(1+y2) |
−2 | ||
1 = | <−−− zauważmy, że prawa strona będzie mniejsza od 0 | |
(1+x2)(1+y2) |
2x2 | |
= x ⇔ 2x2 = x + x3 ⇔ x3 − 2x2 + x = 0 ⇔ x(x2−2x+1) = 0 ⇔ x(x−1)2 = 0 | |
1+x2 |