1 | ||
a) ∑ | ||
√n+1 |
1 | ||
limn−−>∞ | = 0 | |
√n+1 |
1 | 1 | 1 | 1 | ||||
≥ | = | = 12 * | |||||
√n+1 | √n+√n | 2√n | n12 |
1 | ||
∑ | <−−−Szereg Dirichleta rozbieżny | |
n12 |
1 | ||
Odp. Z rozbieżności szeregu ∑12 * | na mocy kryterium porównawczego wynika | |
n12 |
1 | ||
rozbieżność szeregu ∑ | ||
√n+1 |
(n!)3 | ||
b)∑ | ||
(2n)! |
an+1 | (n+1!)3 | (2n)! | ||||
limn−−>∞ | = limn−−>∞ | * | = | |||
an | (2n +2)! | (n!)3 |
(n+1)3*(n!)3 | (2n)! | |||
limn−−>∞ | * | = limn−−>∞ | ||
(2n +2)*(2n +1)*(2n)! | (n!)3 |
(n+1)3 | ||
= limn−−>∞ n4 = ∞ | ||
(2n +2)*(2n +1) |
(n!)3 | ||
Odp. Na mocy kryterium D'Alamberta szereg ∑ | jest rozbieżny. | |
(2n)! |
ln(n) | ||
c) ∑ | ||
πn |
ln(n) | 1n | |||
limn−−>∞ | = limn−−>∞ | = 0 | ||
πn | n*πn−1 |
ln(n+1) | πn | ln(n+1) | ||||
limn−−>∞ | * | = limn−−>∞ | = | |||
πn*π | ln(n) | ln(n) |
1n * π(ln(n)) − ln(n+1)*π*1n | ||
limn−−>∞ | = | |
(πln(n)2 |
| ||||||||||||||
limn−−>∞ | = | |||||||||||||
(πln(n))2 |
| 1 | ||||||||||||
limn−−>∞ | * | = limn−−>∞ | |||||||||||
πn | (πln(n))2 |
| |||||||||||
=0 | |||||||||||
nπln(n)2 |
ln(n) | ||
Odp.Na mocy krytierum D'Alamberta szereg ∑ | jest rozbieżny | |
πn |
π | ||
[(arccos(1∞))∞] = [(arccos(0))∞] = [( | )∞] = ∞ | |
2 |
n+2 | ||
e) ∑( | )n2 (całość do potęgi n2) | |
n+3 |
n+2 | −1 | n2 | ||||
lim n−−>∞ ( | )n2 = lim n−−>∞ [(1 + ( | )n+3)] | = | |||
n+3 | n+3 | n+3 |
1 | ||
[e−1]∞ = ( | )∞ = 0 | |
e |
n+2 | n+2 | |||
lim n−−>∞ n√( | )n2 = lim n−−>∞ ( | )n2*1n = lim | ||
n+3 | n+3 |
n+2 | ||
n−−>∞ ( | )n = | |
n+3 |
−1 | n | 1 | ||||
lim n−−>∞ [(1+ | )n+3] | = [e−1]1 = | ||||
n+3 | n+3 | e |
n+2 | ||
Odp. Na mocy kryterium Cauchy'ego szereg ∑( | )n2 jest zbieżny. | |
n+3 |
1n | 0 | |||
Czyli wyjdzie limn−−>∞ | = limn−−>∞ | = 0 | ||
πn*ln(π) | ∞ |
ln(n) | ln(n+1) | ln(n+1) | ||||
an = | ⇒ an+1 = | = | ||||
πn | πn+1 | πn*π |
an+1 | ln(n+1) | πn | 1 |
| ||||||||||||||
= | * | = | * | = | ||||||||||||||
an | πn*π | ln(n) | π | ln(n) |
1 |
| 1 | 1 | ||||||||||||||
= | (1 + | ) → | (1 + 0) = | < 1 | |||||||||||||
π | ln(n) | π | π |