| 1 | ||
a) ∑ | ||
| √n+1 |
| 1 | ||
limn−−>∞ | = 0 | |
| √n+1 |
| 1 | 1 | 1 | 1 | ||||
≥ | = | = 12 * | |||||
| √n+1 | √n+√n | 2√n | n12 |
| 1 | ||
∑ | <−−−Szereg Dirichleta rozbieżny | |
| n12 |
| 1 | ||
Odp. Z rozbieżności szeregu ∑12 * | na mocy kryterium porównawczego wynika | |
| n12 |
| 1 | ||
rozbieżność szeregu ∑ | ||
| √n+1 |
| (n!)3 | ||
b)∑ | ||
| (2n)! |
)
| an+1 | (n+1!)3 | (2n)! | ||||
limn−−>∞ | = limn−−>∞ | * | = | |||
| an | (2n +2)! | (n!)3 |
| (n+1)3*(n!)3 | (2n)! | |||
limn−−>∞ | * | = limn−−>∞ | ||
| (2n +2)*(2n +1)*(2n)! | (n!)3 |
| (n+1)3 | ||
= limn−−>∞ n4 = ∞ | ||
| (2n +2)*(2n +1) |
| (n!)3 | ||
Odp. Na mocy kryterium D'Alamberta szereg ∑ | jest rozbieżny. | |
| (2n)! |
| ln(n) | ||
c) ∑ | ||
| πn |
| ln(n) | 1n | |||
limn−−>∞ | = limn−−>∞ | = 0 | ||
| πn | n*πn−1 |
| ln(n+1) | πn | ln(n+1) | ||||
limn−−>∞ | * | = limn−−>∞ | = | |||
| πn*π | ln(n) | ln(n) |
| 1n * π(ln(n)) − ln(n+1)*π*1n | ||
limn−−>∞ | = | |
| (πln(n)2 |
| ||||||||||||||
limn−−>∞ | = | |||||||||||||
| (πln(n))2 |
| 1 | ||||||||||||
limn−−>∞ | * | = limn−−>∞ | |||||||||||
| πn | (πln(n))2 |
| |||||||||||
=0 | |||||||||||
| nπln(n)2 |
| ln(n) | ||
Odp.Na mocy krytierum D'Alamberta szereg ∑ | jest rozbieżny | |
| πn |
| π | ||
[(arccos(1∞))∞] = [(arccos(0))∞] = [( | )∞] = ∞ | |
| 2 |
| n+2 | ||
e) ∑( | )n2 (całość do potęgi n2) | |
| n+3 |
| n+2 | −1 | n2 | ||||
lim n−−>∞ ( | )n2 = lim n−−>∞ [(1 + ( | )n+3)] | = | |||
| n+3 | n+3 | n+3 |
| 1 | ||
[e−1]∞ = ( | )∞ = 0 | |
| e |
| n+2 | n+2 | |||
lim n−−>∞ n√( | )n2 = lim n−−>∞ ( | )n2*1n = lim | ||
| n+3 | n+3 |
| n+2 | ||
n−−>∞ ( | )n = | |
| n+3 |
| −1 | n | 1 | ||||
lim n−−>∞ [(1+ | )n+3] | = [e−1]1 = | ||||
| n+3 | n+3 | e |
| n+2 | ||
Odp. Na mocy kryterium Cauchy'ego szereg ∑( | )n2 jest zbieżny. | |
| n+3 |
po drugie (πn)' = nπn−1
a to ciekawe...
(d) nie mogę rozszyfrować
(e) ok
| 1n | 0 | |||
Czyli wyjdzie limn−−>∞ | = limn−−>∞ | = 0 | ||
| πn*ln(π) | ∞ |
| ln(n) | ln(n+1) | ln(n+1) | ||||
an = | ⇒ an+1 = | = | ||||
| πn | πn+1 | πn*π |
| an+1 | ln(n+1) | πn | 1 |
| ||||||||||||||
= | * | = | * | = | ||||||||||||||
| an | πn*π | ln(n) | π | ln(n) |
| 1 |
| 1 | 1 | ||||||||||||||
= | (1 + | ) → | (1 + 0) = | < 1 | |||||||||||||
| π | ln(n) | π | π |