| 13 | ||
c = 6,5 r ⇒ c = | r | |
| 2 |
| 1 | a+b+c | ab | ||||
P = | ab = pr = | r ⇒ r = | ||||
| 2 | 2 | a+b+c |
| a | ||
sinα = | ||
| c |
| b | ||
cosα = | ||
| c |
| 5 | ||
sinα= | ||
| 13 |
c=6.5r
a+b=2r+2R
1)
a+b=2r+6.5r
a+b=8.5r /:(c)
| a | b | 8.5 | |||
+ | = | ⇔ | |||
| c | c | 6.5 |
| 17 | ||
sinα+sinβ= | ||
| 13 |
| a | b | 15r2 | |||
* | = | ||||
| c | c | 42.25r2 |
| 60 | ||
sinα* sinβ= | ||
| 169 |
| 17 | ||
sinα+sinβ= | ||
| 13 |
| 60 | ||
sinα* sinβ= | ||
| 169 |
| 17 | ||
x+y= | ||
| 13 |
| 60 | ||
x*y= | ||
| 169 |
| 5 | 12 | |||
x= | , y= | |||
| 13 | 13 |
| 12 | 5 | |||
x= | , y= | |||
| 13 | 13 |
| a+b−c | ||
Oczywiście Anna, równanie a+b = 2r + 2R, bierze się z zależności r = | , c = 2R | |
| 2 |
1)c=6.5r
a+b=2r+6.5r⇔
a+b=8.5 stąd a=8.5r−b
c2=a2+b2
2)
(8.5r−b)2+b2=42.25r2⇔
2b2−17br+30r2=0
r>0, b>0
Δ=49r2
| 17r−7r | 5 | |||
b= | = | r lub b=6r | ||
| 4 | 2 |
| 6r | 12 | 2.5r | 5 | |||||
sinα= | = | lub sinα= | = | |||||
| 6.5r | 13 | 6.5r | 13 |
| 5 | ||
sinus mniejszego kąta: | ||
| 13 |