u' | |
=1 | |
1−u2 |
1 | |
du=dx | |
1−u2 |
2 | |
du=2dx | |
1−u2 |
2 | ||
∫ | du=∫2dx | |
1−u2 |
(1+u)+(1−u) | ||
∫ | du=2∫dx | |
(1+u)(1−u) |
1 | 1 | |||
(∫ | du+∫ | du)=2∫dx | ||
1−u | 1+u |
1+u | ||
ln| | |=2x+K1 | |
1−u |
1+u | ||
| | |=eK1e2x | |
1−u |
1+u | |
=±eK1e2x | |
1−u |
1+u | |
=K2e2x | |
1−u |
−1+u+2 | |
=K2e2x | |
1−u |
2 | ||
−1+ | =K2e2x | |
1−u |
2 | |
=1+K2e2x | |
1−u |
1−u | 1 | ||
= | |||
2 | 1+K2e2x |
2 | ||
1−u= | ||
1+K2e2x |
2 | ||
u=1− | ||
1+K2e2x |
2 | ||
u=1− | ||
1+C1e2x |
2 | ||
y'=1− | ||
1+C1e2x |
2 | ||
dy=(1− | )dx | |
1+C1e2x |
2 | ||
∫dy=∫(1− | )dx | |
1+C1e2x |
1 | ||
∫dy=∫dx − 2∫ | dx | |
1+C1e2x |
1 | ||
y= x − 2∫ | dx | |
1+C1e2x |
1 | ||
∫ | dx | |
1+C1e2x |
1 | ||
dx= | dt | |
2(t−1) |
1 | 1 | 1 | t−(t−1) | ||||
∫ | dt= | ∫ | dt | ||||
2 | t(t−1) | 2 | t(t−1) |
1 | 1 | 1 | 1 | 1 | |||||
∫ | dt= | (∫ | dt−∫ | dt) | |||||
2 | t(t−1) | 2 | t−1 | t |
1 | t−1 | |||
= | ln| | | | ||
2 | t |
1+C1e2x | ||
y=x+ln| | |+C3 | |
C1e2x |
1+C1e2x | ||
y=x+ln| | |−ln|C1|+C3 | |
e2x |