Dane jest koło k1 o promieniu r
Ania: Dane jest koło k1 o promieniu r.
W tym kole narysowano koło k2 styczne wewnętrznie, którego pole jest równe połowie pola koła
k1.
W kole k2 narysowano koło k3 styczne wewnętrznie, którego pole jest równe połowie pola koła
k2.
Czynność tę powtórzono nieskończenie wiele razy.
Oblicz sumę obwodów wszystkich narysowanych kół.
21 mar 20:56
chichi:
Z którym etapem masz problem?
21 mar 21:05
Ania: Mam problem z samym początkiem, z zapisaniem tego.
A dokładniej to to jak dojść do tego szeregu
21 mar 21:13
wredulus_pospolitus:
kwestia styczności wewnętrznej tak naprawdę można 'olać'.
załóżmy, że pierwsze koło ma pole równe 100π więc r=10, to drugie jakie będzie miało jakie
pole? Więc jaki będzie miało promień? A kolejne jakie będzie miało pole? I jaki promień?
Widzisz zależność pomiędzy wartością każdego kolejnego promienia?
Super. To teraz zamiast początkowego 10, dajesz r.
Jaki jest wzór na obwód koła? Jak będą się prezentowały obwody tych mniejszych kół?
Teraz wzór na sumę ciągu .... (jakiego?) ... i liczysz
21 mar 21:17
Ania: Dziękuję za wytłumaczenie!
21 mar 21:21