x3 | x5 | x7 | (−1)n | |||||
(1) sin(x) = x − | + | − | + ... = ∑ | x2n+1 | ||||
3! | 5! | 7! | (2n+1)! |
x2 | x4 | x6 | (−1)n | |||||
(2) cos(x) = 1 − | + | − | + ... = ∑ | x2n | ||||
2! | 4! | 6! | (2n)! |
x2 | x3 | xn | ||||
(3) ex = 1 + x + | + | + ... = ∑ | ||||
2! | 3! | n! |
(iφ)2 | (iφ)3 | (iφ)4 | (iφ)5 | |||||
eiφ = 1 + iφ + | + | + | + | + ... = | ||||
2! | 3! | 4! | 5! |
φ2 | φ3 | φ4 | φ5 | |||||
= 1 + iφ − | + i | + | +i | + ... = | ||||
2! | 3! | 4! | 5! |
φ2 | φ4 | φ3 | φ5 | |||||
= 1 − | + | + ... + iφ − i | + i | = | ||||
2! | 4! | 3! | 5! |
φ2 | φ4 | φ3 | φ5 | |||||
= (1 − | + | − ...) + i(φ − | + | − ...) = | ||||
2! | 4! | 3! | 5! |