π | α | π | β | |||||
sin4( | + | ) + sin4( | + | ) | ||||
8 | 4 | 8 | 4 |
3 | 4 | 3 | 4 | |||||
obliczyłam z ΔAED cosα = | i sin α = | oraz cosβ = | i sin β = | |||||
5 | 5 | 5 | 5 |
α | β | π | ||||
α+β=π to | + | = | ||||
4 | 4 | 4 |
π | α | π | β | π | π | π | ||||||||
zauważ,że | + | + | + | = | + | = | ||||||||
8 | 4 | 8 | 4 | 4 | 4 | 2 |
π | β | π | π | α | ||||||
to ( | + | )=( | −( | + | )) | |||||
8 | 4 | 2 | 8 | 4 |
π | β | π | α | |||||
więc sin( | + | )= cos( | + | ) | ||||
8 | 4 | 8 | 4 |
1 | π | α | 1 | π | α | |||||||
W= 1 − | sin22( | + | ) = 1− | sin2( | + | ) | ||||||
2 | 8 | 4 | 2 | 4 | 2 |
1 | ||
cos(2x)= 1−2sin2x⇒ sin2x= | (1−cos(2x)) | |
2 |
1 | π | π | ||||
to W=1− | (1−cos( | +α)) i cos( | +α)= −sinα | |||
4 | 2 | 2 |
1 | 1 | |||
W= 1− | − | sinα =...... | ||
4 | 4 |
11 | ||
W= | ||
20 |