matematykaszkolna.pl
Okrąg wpisany i opisany na trapezie Werve: Na trapezie można opisać okrąg i wpisać w niego okrąg. Oblicz r i R, jeśli przekątna równa się 10, a obwód wynosi 24.
9 mar 19:40
Werve: Wg moich obliczeń, to zadanie jest nie do obliczenia: 1) Ramiona mają po 6, a podstawy 12−x i x; 2) Używamy twierdzenia cosinusów: 102=x2+62+2*x*6*cosa 102=62+(12−x)2−2*6*(12−x)*cosa 3)Nie użyłem tu, jak dla mnie prostych przekształceń, których użyłem, bo dla mnie są jasne. Czy popełniłem tu błąd?
9 mar 19:43
chichi: No nie, ale masz jedno równanie z dwoma niewiadomymi więc znajdź jeszcze jedno równanie. Na przykład napisz tw. Carnota (cosinusów) jeszcze raz, czyli spójrz na trójkąt po drugiej stronie przekątnej do tego, do którego napisałeś
9 mar 19:49
Werve: Napisałem te równania dla dwóch stron
9 mar 19:51
Werve: Widać, że w jednej stronie jest + z cosinusem, a z drugiej −
9 mar 19:51
Werve: I też jakbyś mi to mógł po prostu policzyć to byłbym wdzięczny bo chce mieć pewność że w tych danych jest błąd
9 mar 19:53
chichi: Ale ja nie wiem czy szedłbym tą drogą, jak usiądę do komputera to odpisze
9 mar 20:07
Werve: Droga nie wiem najłatwiejsza, ale jeśli mój sposób jest dobry a wyjdzie sprzeczność to obaliłem zadanie na kartkówce, więc się cieszę
9 mar 20:18
chichi: Ale w jaki sposób Ty "obaliłeś to zadanie"
9 mar 20:31
Werve: że po prostu nie da się wyliczyć długości podstaw dla tych danych moim sposobem
9 mar 20:35
chichi: Jeżeli pokazałeś, że ten układ nie ma rozwiązań to ok. Natomiast jeżeli go nie rozwiązałeś, bo nie potrafiłeś, to to żadne obalenie
9 mar 20:41
Mila: Czy dobrze obwód jest wpisany?
9 mar 20:43
Eta: Przy takich danych ..... sprzeczność
9 mar 20:48
Mila: rysunek 1) Trapez równoramienny obw=4x+4y 4x+4y=24 x+y=6 3) W ΔDEB: h=2r |EB|=x+y (2r)2+(x+y)2=102 4r2+62=100 4r2=64 r2=16 r=4 4) W ΔAED: h=8, |AD|=6 sprzeczność bo przeciwprostokątna jest dłuższa od każdej z przyprostokątnych. Oto co otrzymujemy dalej:
 h 2r 8 
sinα=

=

=

>1 sprzeczność.
 x+y 6 6 
Błędne dane.
9 mar 20:50
chichi: Sprzeczność jest oczywista, pytanie czy autor ją wykazał, czy jest tak jak napisałem o 20:41
9 mar 20:51
Eta: rysunek a+b=2c to a+b=12 i c=6
 a+b 
|AE|=

=6 to h=2r=6
 2 
w ΔEBC : c<h −− sprzeczność
9 mar 20:53
chichi: 102 = x(12−x) + 62 ⇔ x2 − 12x + 64 = 0 ⇔ (x − 6)2 + 28 = 0 − sprzeczne!
9 mar 20:53
Eta: Ma być: h=2r=8
9 mar 20:56