π | ||
arc sinx=arcsin(−1)=− | ||
2 |
π | ||
arc sinx+arc cosx= | ||
2 |
π | ||
(1) sinα=cosβ=sin( | −β) | |
2 |
π | ||
(2) | −β=α+2kπ | |
2 |
π | ||
(3) | −β=π−α+2kπ k∊C | |
2 |
π | π | |||
(4) − | <α< | i 0<β<π to | ||
2 | 2 |
π | 3 | π | 3 | |||||
− | <α+β< | π i − | <β−α< | π | ||||
2 | 2 | 2 | 2 |
π | π | 3 | ||||
(5) − | < | −2kπ< | π | |||
2 | 2 | 2 |
π | π | 3 | ||||
(6) − | < | −(2k+1)π< | π | |||
2 | 2 | 2 |
1 | ||
Z (5) dostaniesz −U{1}[2}<k< | stad k=0 | |
2 |
π | ||
α+β= | ||
2 |
π | ||
arc sinx+arc cosx= | cnd | |
2 |
π | π | |||
dla x ∊ [−1, 1] jesteśmy w stanie naleźć φ ∊ [− | , | ] takie, że: | ||
2 | 2 |
π | ||
sin(φ) = x ∧ cos( | − φ) = x, zatem mamy: | |
2 |
π | π | |||
L = arcsin(x) + arccos(x) = arcsin(sin(φ)) + arccos(cos( | − φ)) = φ + | − φ = | ||
2 | 2 |
π | ||
= | = P □ | |
2 |