3n + √9n2 + 3n | ||
an = 3n − √9n2 + 3n * | = ... | |
3n + √9n2 + 3n |
9n2 − ( 9n2 + 3n) | ||
an = 3 n − √9n2 + 3n = | = | |
3n + √9n2 + 3n |
− 3n | ||
= | = ( dzielimy licznik i mianownik przez n) | |
3n + √9n2 + 3n |
−3 | ||
= | ||
3 + √9 + 3n |
−3 | −3 | 1 | ||||
lim an = | = | = − | ||||
3 + √9 + 0 | 6 | 2 |
a2 − b2 | ||
a − b = | ||
a + b |