| (5+5+2x)√25−x2 | ||
P= | =(5+x)√25−x2 | |
| 2 |
| −2x | ||
P'(x)=1*√25−x2+(x+5)* | ||
| 2√25−x2 |
| 25−x2+(x+5)*(−x) | ||
P'(x)= | ||
| √25−x2 |
| 5−15 | 10 | 5 | 5+15 | |||||
x= | = | = | lub x= | =5∉D | ||||
| −4 | 4 | 2 | 4 |
Trochę inne podejście:
| 5+5+2x | ||
Ptrapez = | *h = (5+x)*h = (5+5*sinα)*5cosα = 25(1+sinα)*cosα | |
| 2 |
| −1 ± 3 | ||
f' = 0 ⇔ 2sin2α + sinα − 1 = 0 −−−> sinα = | −−−> sinα = 1/2 −−−> α = 30o | |
| 4 |
| 75√3 | ||
Ptrapez = 25*(1 + 1/2)*√3/2 = | ||
| 4 |