1 | ||
Witam mam problem z obliczeniem całki ∫ | dx | |
cos3x |
1 | 1 | |||
podobnie można przez częsci rozdzielając | i | |||
cos2x | cosx |
ds | ||
całka = ∫ | ||
(1−s2)2 |
1 | 1 | 1 | 1 | ||||
= | ( | + | )2 | ||||
(1−s2)2 | 4 | 1−s | 1+s |
1 | 1 | 1 | 1 | 1 | ||||||
= | ( | + | + | + | ) | |||||
4 | (1−s)2 | (1+s)2 | 1+s | 1−s |
1 | cos2x+sin2x | |||
∫ | dx=∫ | dx | ||
cos3x | cos3x |
1 | cos2x | sin2x | ||||
∫ | dx=∫ | dx+∫ | dx | |||
cos3x | cos3x | cos3x |
1 | 1 | sinx | ||||
∫ | dx=∫ | dx+∫sinx | dx | |||
cos3x | cosx | cos3x |
sinx | ||
Całkę ∫sinx | dx łatwo policzyć przez części | |
cos3x |
sinx | ||
biorąc u = sinx dv = | dx | |
cos3x |
sinx | ||
u = sinx dv = | dx | |
cos3x |
1 | ||
du = cosx dx v = | ||
2cos2x |
1 | 1 | 1 | sinx | 1 | cosx | ||||||
∫ | dx=∫ | dx+ | − | ∫ | dx | ||||||
cos3x | cosx | 2 | cos2x | 2 | cos2x |
1 | 1 | sinx | 1 | 1 | |||||
∫ | dx= | + | ∫ | dx | |||||
cos3x | 2 | cos2x | 2 | cosx |
t2 − 1 | ||
sinx = | ||
t2 + 1 |
t2 − 1 | t2+1−t2+1 | |||
cosx = (1− | )t=( | )t | ||
t2 + 1 | t2 + 1 |
2t | ||
cosx = | ||
t2+1 |
t2 − 1 | ||
sinx = | ||
t2 + 1 |
2t(t2+1)−2t(t2−1) | ||
cosxdx = | dt | |
(t2+1)2 |
4t | ||
cosxdx = | dt | |
(t2+1)2 |
2t | 2 | ||
cosxdx = | dt | ||
t2+1 | t2+1 |
2t | 2t | 2 | ||
dx= | dt | |||
t2+1 | t2+1 | t2+1 |
2 | ||
dx = | dt | |
t2+1 |
1 | t2+1 | 2 | |||
∫ | dx=∫ | dt | |||
cosx | 2t | t2+1 |
1 | 1 | |||
∫ | dx=∫ | dt | ||
cosx | t |
1 | cosx | |||
∫ | dx=ln| | |+C | ||
cosx | 1−sinx |
1 | cosx(1+sinx) | |||
∫ | dx=ln| | |+C | ||
cosx | (1−sinx)(1+sinx) |
1 | cosx(1+sinx) | |||
∫ | dx=ln| | |+C | ||
cosx | 1−sin2x |
1 | cosx(1+sinx) | |||
∫ | dx=ln| | |+C | ||
cosx | cos2x |
1 | 1+sinx | |||
∫ | dx=ln| | |+C | ||
cosx | cosx |
1 | ||
∫ | dx | |
cos3x |
1 | ||
∫ | dx | |
cos3x |
cosx | cosx | |||
∫ | dx=∫ | dx | ||
cos4x | (1−sin2x)2 |
1 | 1 | |||
∫ | dt = ∫ | dt | ||
(1−t2)2 | (1−t)2(1+t)2 |
1 | 1 | (1 − t)2 +2(1 − t)(1 + t)+ (1 + t)2 | ||||
∫ | dt = | (∫ | dt) | |||
(1−t2)2 | 4 | (1−t)2(1+t)2 |
1 | 1 | 1 | 1 | 1 | ||||||
∫ | dt = | (∫ | +2∫ | dt + ∫ | dt) | |||||
(1−t2)2 | 4 | (1+t)2 | (1−t)(1+t) | (1−t)2 |
1 | 1 | 1 | (1 − t) + (1 + t) | |||||
∫ | dt = | (∫ | dt+∫ | dt + | ||||
(1−t2)2 | 4 | (1+t)2 | (1−t)(1+t) |
1 | ||
∫ | dt) | |
(1−t)2 |
1 | 1 | 1 | 1 | 1 | 1 | |||||||
∫ | dt = | (∫ | dt+∫ | dt+∫ | dt+∫ | dt) | ||||||
(1−t2)2 | 4 | (1+t)2 | 1+t | 1−t | (1−t)2 |
1 | 1 | 1 | 1 | |||||
∫ | dt = | (− | + | +ln|1+t|−ln|1−t|)+C | ||||
(1−t2)2 | 4 | 1+t | 1−t |
1 | 1 | 2t | 1+t | |||||
∫ | dt = | ( | +ln| | |)+C | ||||
(1−t2)2 | 4 | 1−t2 | 1−t |
1 | 1 | 2sinx | 1+sinx | |||||
∫ | dx = | ( | +ln| | |)+C | ||||
cos3x | 4 | cos2x | 1−sinx |
1 | 1 | 2sinx | (1+sinx)(1+sinx) | |||||
∫ | dx = | ( | +ln| | |)+C | ||||
cos3x | 4 | cos2x | (1−sinx)(1+sinx) |
1 | 1 | 2sinx | (1+sinx)2 | |||||
∫ | dx = | ( | +ln| | |)+C | ||||
cos3x | 4 | cos2x | (1−sin2x) |
1 | 1 | 2sinx | (1+sinx)2 | |||||
∫ | dx = | ( | +ln| | |)+C | ||||
cos3x | 4 | cos2x | cos2x |
1 | 1 | 2sinx | 1+sinx | |||||
∫ | dx = | ( | +2ln| | |)+C | ||||
cos3x | 4 | cos2x | cosx |
1 | 1 | sinx | 1+sinx | |||||
∫ | dx = | ( | +ln| | |)+C | ||||
cos3x | 2 | cos2x | cosx |
1 | ||
∫ | dx | |
cos3x |
t2 − 1 | ||
sinx = | ||
t2+1 |
t2 − 1 | t2+1−t2+1 | |||
cosx = (1 − | )t = ( | )t | ||
t2+1 | t2+1 |
2t | ||
cosx = | ||
t2+1 |
t2 − 1 | ||
sinx = | ||
t2+1 |
2t(t2+1)−2t(t2−1) | ||
cosxdx = | dt | |
(t2+1) |
4t | ||
cosxdx = | dt | |
(t2+1)2 |
2t | 2 | ||
cosxdx = | dt | ||
t2+1 | t2+1 |
2t | 2t | 2 | ||
dx = | dt | |||
t2+1 | t2+1 | t2+1 |
2 | ||
dx = | dt | |
t2+1 |
(t2+1)3 | 2 | ||
∫ | dt= | ||
8t3 | t2+1 |
1 | (t2+1)3 | ||
∫ | dt | ||
4 | t3 |
1 | (t2+1)2 | ||
∫ | dt | ||
4 | t3 |