logika
ewa12: . Niech x i z należą do zbioru liczb naturalnych. Odczytać wyrażenie ∃x∀z(x ≤ z). Jaką własność
liczb naturalnych ono wyraża? Czy w tym wyrażeniu występują zmienne wolne? Jaka jest wartość
logiczna tego wyrażenia? Czy wartość logiczna tego wyrażenia ulegnie zmianie gdy x i z należą
do
zbioru liczb całkowitych?
2 sty 17:49
wredulus_pospolitus:
powyższe zdanie ma wartość logiczną '1' −−− x=0 ; wtedy dla dowolnego 'z' spełniona jest
nierówność
jeżeli x,z należą do zbioru liczb całkowitych, to zdanie to będzie fałszywe (nie będzie
istniało takie x)
2 sty 18:13