3n−1 | ||
granica do nieskończoności z ( | )n+4 | |
3n+1 |
2 | ||
mam rozwiązane do tego momentu (1− | )n+4 | |
3n+1 |
2 | 1 | |||||||||
(1− | )n+4 = [(1+ | )(3n+1)/(−2)](−2(n+4))/(3n+1) | ||||||||
3n+1 |
|
2 | 1 | |||||||||
zapisz | = | |||||||||
3n+1 |
|
3n+1 | ||
dalej zapisz potęgę w postaci | *(n+4) | |
3n+1 |
3 n − 1 |
| ||||||||||||
an = ( | )4*( | )n = | |||||||||||
3 n+1 |
|
3 n −1 |
| ||||||||||||
= ( | )4 * [ | ]13 | |||||||||||
3 n +1 |
|
e−1 | ||
lim an = 1*[ | ]1/3 = e−2/3 | |
e1 |