1 | ||
L = tg2x + ctg2x = | − 2 = P | |
sin2x*cos2x |
sin2x | cos2x | sin2x+cos2x | ||||
L= | + | = | = | |||
cos2x | sin2x | sin2x*cos2x |
(....)2 − 2sin2x*cos2x | ||
sin2x*cos2x |
sin2x | cos2x | sin4x + cos4x | ||||
L = | + | = | = | |||
cos2x | sin2x | sin2xcos2 |
(sin2x + cos2x)2 − 2sin2xcos2 | |
= ,,, | |
sin2xcos2x |
sinx | cosx | |||
tg2x+ctg2x= | + | = sprowadzamy do wspólnego mianownika | ||
cosx | sinx |
sin2x+cos2x | 1 | |||
= | = | |||
sinxcosx | sinxcosx |
1−2sin2xcos2x | 1 | ||
= | −2 | ||
sin2xcos2x | sin2xcos2x |