| 4 | 3 | |||
a2 = 1 − | = − | |||
| 5/2 | 5 |
| 4 | 8 | 2 | ||||
a3 = 1 − | = − | = − | ||||
| 12/5 | 12 | 3 |
| 4 | 5 | |||
a4 = 1 − | = − | |||
| 7/3 | 7 |
| 4 | 12 | 3 | ||||
a5 = 1 − | = − | = − | ||||
| 16/7 | 16 | 4 |
| 4 | 7 | |||
a6 = 1 − | = − | |||
| 9/4 | 9 |
| 4 | 16 | 4 | ||||
a7 = 1 − | = − | = − | ||||
| 20/9 | 20 | 5 |
sprawdźmy, czy mamy rację:
| 4 | 4 | ||||||||||||
an+2 = 1 − | = 1 − | = | |||||||||||
| an+1 + 3 |
|
| 4 | 1 | an + 3 | |||||||||||||||||||
= 1 − | = 1 − | = 1 − | = | ||||||||||||||||||
|
| an + 2 |
| 1 | ||
= − | ||
| an + 2 |
| p | ||
niech an = | ||
| q |
| 1 | p+2q − q | q | ||||||||||
wtedy: an+2 = − | = − | = − | ||||||||||
| p+2q | p+2q |
| q | ||
dla n = 2k+1 sądzimy, że jeżeli p+q = 1 to wtedy an+2 = − | ||
| q+1 |
| q | ||
dla n = 2k sądzimy, że jeżeli p+q = 2 to wtedy an+2 = − | ||
| q+2 |