1 | 1 | 1 | 3 | ||||
+ | + ... + | > | |||||
n+1 | n+2 | 2n | 5 |
1 | 1 | 1 | 3 | ||||
+ | + ... + | > | |||||
n+2 | n+3 | 2n+2 | 5 |
1 | 1 | 1 | ||||
Sn = | + | + ... + | , | |||
n+1 | n+2 | 2n |
1 | 1 | 1 | 1 | 1 | ||||||
Sn − Sn−1 = | + | − | = | − | > 0. | |||||
2n−1 | 2n | n | 2n−1 | 2n |
1 | 1 | 1 | 1 | 1 | ||||||
L = | + | + ... + | + | + | > | |||||
n+2 | n+3 | 2n | 2n+1 | 2n+2 |
1 | 1 | 1 | 1 | 1 | ||||||
> | + | + ... + | + | + | = | |||||
n+2 | n+3 | 2n | 2n+2 | 2n+2 |
1 | 1 | 1 | 2 | |||||
= | + | + ... + | + | = | ||||
n+2 | n+3 | 2n | 2n+2 |
1 | 1 | 1 | 1 | 3 | ||||||
= | + | + ... + | + | > //z (2) // > | = P | |||||
n+2 | n+3 | 2n | n+1 | 5 |
1 | 1 | |||
innym sposobem byłoby wykazanie, że ciąg {an} ; an = | + ... + | jest | ||
n+1 | 2n |
3 | ||
ciągiem rosnącym (dla n≥3) i wykazać, że a3 > | ||
5 |
1 | 1 | 1 | |||
+ | +...+ | = | |||
n+2 | n+3 | 2n+2 |
1 | 1 | 1 | 1 | 1 | 1 | 1 | ||||||||
= ( | + | + | +...+ | ) + | + | − | > | |||||||
n+1 | n+2 | n+3 | 2n | 2n+1 | 2n+2 | n+1 |
3 | 1 | 1 | 1 | ||||
+ | + | − | |||||
5 | 2n+1 | 2n+2 | n+1 |
1 | ||
Dodaliśmy pierwszy wyraz | , żeby skorzystać z założenia indukcyjnego (oczywiście ten | |
n+1 |
1 | 1 | 1 | 1 | 1 | 2 | ||||||
+ | − | = | + | − | = | ||||||
2n+1 | 2n+2 | n+1 | 2n+1 | 2n+2 | 2n+2 |
1 | 1 | 1 | |||
− | = | > 0 | |||
2n+1 | 2n+2 | (2n+1)(2n+2) |