| 4n−1 | ||
lim ( | )n+4 | |
| 4n+1 |
| 1 | ||
Odpowiedź to | ale nie wiem z czego to wynika | |
| √e |
| 4n−1 | −2 | |||
( | )n+4 = [(1+ | )4n+1](n+4)/(4n+1) → e−2*0.25 = e−0.5 = | ||
| 4n+1 | 4n+1 |
| 1 | ||
= | ![]() | |
| √e |
| 4 n −1 | ||
lim ( | )n+4 = | |
| 4 n +1 |
| 4 n − 1 |
| ||||||||||||
= lim ( | )4*[ | ]14 = | |||||||||||
| 4 n +1 |
|
| e−1 | ||
= 14*[ | ]14 = [e−2]14 = e−0,5 | |
| e1 |