4n−1 | ||
lim ( | )n+4 | |
4n+1 |
1 | ||
Odpowiedź to | ale nie wiem z czego to wynika | |
√e |
4n−1 | −2 | |||
( | )n+4 = [(1+ | )4n+1](n+4)/(4n+1) → e−2*0.25 = e−0.5 = | ||
4n+1 | 4n+1 |
1 | ||
= | ||
√e |
4 n −1 | ||
lim ( | )n+4 = | |
4 n +1 |
4 n − 1 |
| ||||||||||||
= lim ( | )4*[ | ]14 = | |||||||||||
4 n +1 |
|
e−1 | ||
= 14*[ | ]14 = [e−2]14 = e−0,5 | |
e1 |