n(n−1) | ||
a2 * | +na+1≤(1+a)n gdzie a>0 | |
2 |
n(n−1) | ||
P = (1+a)n+1 ≥ // z (2) // ≥ (1+a)*[a2 | +na+1] = | |
2 |
n(n−1) | n(n−1) | |||
= a2 | +na+1 + a[a2 | +na+1] = | ||
2 | 2 |
n(n−1) | n(n−1) | |||
= a2 | +na+1 + a + na2 + a3 | = | ||
2 | 2 |
n(n−1) | n(n−1) | |||
= a2[ | + n] +[na+a] +1 + a3 | = | ||
2 | 2 |
n(n+1) | n(n−1) | n(n+1) | ||||
= a2 | + (n+1)a + 1 + a3 | ≥ a2 | + (n+1)a + 1 = L | |||
2 | 2 | 2 |