cos |t−x| | ||
Niech f(x)=∫0π/2 | dt dla 0≤ x≤π. | |
1+sin |t−x| |
1+cos(x) | ||
ln| | |, gdy x<t | |
1−sin(x) |
π | ||
, gdy x=t | ||
2 |
1+sin(x) | ||
ln| | |, gdy x>t | |
1−cos(x) |
1+cos(x) | ||
Niech f(x)=ln| | | i ograniczmy się w dziedzinie do przedziału podanego w | |
1−sin(x) |
π | ||
x≠ | ∧ ((cos(x)>−1 ∧ sin(x)<1) v (cos(x)<−1 ∧ sin(x)>1)) | |
2 |
π | π | π | ||||
x≠ | ∧ ((x∊<0;π) ∧ x∊<0; | )∪( | ;π>) v (x∊∅ ∧ x∊∅)) | |||
2 | 2 | 2 |
π | π | π | ||||
x≠ | ∧ x∊<0; | )∪( | ;π) | |||
2 | 2 | 2 |
π | π | |||
x∊<0; | )∪( | ;π) | ||
2 | 2 |
π | π | |||
Suma przedziałów ''<0; | )∪( | ;π)'' to dziedzina dla naszej 1 części. | ||
2 | 2 |
1+cos(x) | π | π | ||||
f(x)=ln| | |, x∊D=<0; | )∪( | ;π)' i gdy x<t | |||
1−sin(x) | 2 | 2 |
1−sin(x) | sin2(x)−sin(x)+cos2(x)+cos(x) | |||
f'(x)= | * | = | ||
1+cos(x) | (1−sin(x))2 |
1 | sin2(x)−sin(x)+cos2(x)+cos(x) | |||
= | * | = | ||
1+cos(x) | 1−sin(x) |
sin2(x)−sin(x)+cos2(x)+cos(x) | ||
= | = | |
(1−sin(x))(1+cos(x)) |
1−sin(x)+cos(x) | ||
= | ||
(1−sin(x))(1+cos(x)) |