| 2sinx+3cosx | ||
∫ | dx | |
| sin2xcosx+2cos3x |
| 2sinx | 3cosx | ||
+ | |||
| sin2xcosx+2cos3x | sin2cosx+2cos3x |
| 3cosx | |
skracasz cosinusy i po krzyku | |
| sin2cosx+2cos3x |
| 2sinx | |
w tej natomiast zamieniasz | |
| sin2xcosx+2cos3x |
Buraki to są na polu
| 3cos | dx | dx | ||||
∫ | dx = 3∫ | = 3∫ | = ... | |||
| sin2xcosx+2cos3x | sin2x+2cos2x | cos2x+1 |
Proszę jeszcze raz o pomoc
| 1 | ||
(tgx)' = | ||
| 1+cos2x |
| 1 | ||
∫ | dx = tgx | |
| 1+cos2x |
| dx | ||
J = 3∫ | ||
| 1 + cos2x |
| 1 − t2 | 2dt | |||
Podstawienie: tg(x/2) = t , cosx = | dx = | |||
| 1 + t2 | 1 + t2 |
| 2t | (1−t2)2 | |||
J = 3∫ | /{1 + | }dt | ||
| 1 + t2 | (1+t2)2 |
| t | (1 + t2)2 | |||
J = 6∫ | * | ]dt | ||
| 1 + t2 | 1 + 2t2 + t4 + 1 − 2t2 + t4 |
| t*(1 + t2) | t + t3 | |||
J = 6∫ | dt = 3∫ | dt = | ||
| 2 + 2t4 | 1 + t4 |
| t | t3 | |||
J = 3(∫ | dt + ∫ | dt) = 3*(J1 + J2) | ||
| 1 + t4 | 1 + t4 |
| t3 | ||
J2 = ∫ | dt | |
| 1 + t4 |
| 1 | du | 1 | −1 | |||||
J2 = | ∫ | = | = | |||||
| 4 | u4 | −12u3 | 12*(1 + t4)3 |
| t | ||
J1 = ∫ | dt | |
| 1 + t4 |
| 1 | du | 1 | 1 | |||||
J1 = | ∫ | = | arctg(u) = | arctgt2 | ||||
| 2 | 1 + u2 | 2 | 2 |
| 2 | (1−t2)2 | |||
J = 3∫ | /(1 + | ) dt wówczas wychodziło by; | ||
| 1+t2 | (1+t2)2 |
| 1+t2 | ||
3∫ | dt | |
| 1+t4 |
| 1 + t2 | ||
J = 3∫ | dt | |
| 1 + t4 |
| 1 + t2 | dt | t2 | ||||
J = 3∫ | dt = 3(∫ | + ∫ | dt) = 3*(J1 + J2) | |||
| 1 + t4 | 1 + t4 | 1 + t4 |
| dt | ||
J1 = ∫ | = | |
| 1 + t4 |
| 1 | t2+t√2+1 | 1 | t√2 | ||||
*ln| | | + | *arctg | |||||
| 4√2 | t2−t√2+1 | 2√2 | 1−t2 |
| t2 | ||
J2 = ∫ | dt = | |
| 1 + t4 |
| 1 | t2+t√2+1 | 1 | t√2 | |||||
− | *ln| | | + | *arctg | |||||
| 4√2 | t2−t√2+1 | 2√2 | 1−t2 |
dla mnie to by wyglądało w ten sposób:
| 2sinx+3cosx | ||
∫ | dx = (przekształcam mianownik) | |
| sin2xcosx+cos3x |
| 2sinx+3cosx | sinx | 1 | ||||
= ∫ | dx = 2∫ | dx + 3∫ | dx = | |||
| cosx(1+2cos2x) | cosx(1+2cos2x) | 1+2cos2x |
| 1 | 1 | |||
=2∫tgx* | dx + 3∫ | dx = (podstawienie za tgx) = | ||
| 1+2cos2x | 1+2cos2x |
| t2 | 1 | |||
= 2∫ | dt + 3∫ | dx = tg2x + 3tgx + C | ||
| 2 | 1+2cos2x |
| 1 | ||
∫ | dx≠tgx ![]() | |
| 1+2cos2x |
tej 2 w mianowniku nie powinno być
| 3√2 |
| ||||||||||||
−2ln|cosx|+ln|cos2x+1|+ | arctg( | )+ | |||||||||||
| 2 | 2 |
| 3√2 |
| ||||||||||||
+ | arctg( | ) + C | |||||||||||
| 2 | 2 |
| 2 | 4 | 2cosx−1 | 1 | |||||
− | ln|1+cosx|+ | ln|cos2x−cosx+1|−8arctg( | )+12arctg( | tgx) + C | ||||
| 3 | 3 | 3 | 2 |
| 1 | 1 | |||
(tgx)' = | a nie | |||
| cos2x | 1 + cos2x |
| 1 | ||
całkę ∫ | rozwiązuję się w następujący sposób. | |
| 1 + x4 |
| 1 | 1 | 1 | |||
= | = | ||||
| 1 + x4 | (1 + x2)2 − 2*x2 | (1 + x√2 + x2)*(1 − x√2 + x2) |
| 1 | ||
AS wiem, że (tgx)'≠ | i to uwzględniłem , tylko właśnie nierozumiem czemu są tak | |
| 1+cos2x |
| 2sinx+3cosx | 2sinx+3cosx | |||
∫ | dx = ∫ | dx = | ||
| sin2xcosx+2cos3x | cosx(sin2x+2cos2x) |
| 2sinx+3cosx | sinx | dx | ||||
= ∫ | dx = 2∫ | dx + 3∫ | dx = | |||
| cosx(cos2x+1) | cosx(cos2x+1) | cos2x+1 |
| sinx | ||
J1 = ∫ | dx = | |
| cosx(cos2x+1) |
| u | ||
R(u,v)= | , R(−u,v)=−R(u,v), t=cosx, dt=−sinxdx, sinxdx=−dt | |
| v(v2+1) |
| −dt | 1 | t | dt | t | ||||||
= ∫ | = −∫( | − | )dt = ∫ | + ∫ | dt = −ln|t| + | |||||
| t(t2+1) | t | t2+1 | t | t2+1 |
| 1 | 2t | 1 | 1 | |||||
+ | ∫ | dt = −ln|t| + | ln|t2+1| = −ln|cosx| + | ln|cos2x+1| | ||||
| 2 | t2+1 | 2 | 2 |
| dx | ||
J2 = ∫ | dx = | |
| cos2x+1 |
| x | 2dt | 1−t2 | ||||
t=tg( | ), dx= | , cosx= | ||||
| 2 | 1+t2 | 1+t2 |
| t2+1 | |||||||||
= ∫ | = ∫ | dt = | ||||||||
| t4+1 |
| t2+1 | t2+1 | |||
=,∫ | dt = ∫ | dt = | ||
| (t2+1)2−2t2 | (t2−√2t+1)(t2+√2t+1) |
| 1 | 1 | |||
= ∫( | + | ) dt = | ||
| 2(t2−√2t+1) | 2(t2+√2t+1) |
| 1 | dt | 1 | dt | |||||
= | ∫ | + | ∫ | = | ||||
| 2 | t2−√2t+1 | 2 | t2+√2t+1 |
| 1 | dt | 1 | dt | |||||||||||||||||||||||||||||||||||
= | ∫ | + | ∫ | = | ||||||||||||||||||||||||||||||||||
| 2 |
| 2 |
|
| 1 | dt | 1 | dt | |||||||||||||||||||||||
= | ∫ | + | ∫ | = | ||||||||||||||||||||||
| 4 |
| 4 |
|
| 1 | ||||||||||||
u1= | , du1= | dt, dt=√2du1 | |||||||||||
| √2 | √2 |
| 1 | ||||||||||||
u2= | , du2= | dt, dt=√2du2 | |||||||||||
| √2 | √2 |
| 1 | √2du1 | 1 | √2du2 | |||||
= | ∫ | + | ∫ | = | ||||
| 4 | u12+1 | 4 | u22+1 |
| √2 | du1 | √2 | du2 | |||||
= | ∫ | + | ∫ | = | ||||
| 4 | u12+1 | 4 | u22+1 |
| √2 | √2 | |||
= | arctgu1 + | arctgu2 = | ||
| 4 | 4 |
| √2 | √2t−1 | √2 | √2t+1 | |||||
= | arctg( | ) + | arctg( | ) = | ||||
| 4 | 2 | 4 | 2 |
| √2 |
| √2 |
| |||||||||||||||||||||||
= | arctg( | ) + | arctg( | ) | ||||||||||||||||||||||
| 4 | 2 | 4 | 2 |
| 2sinx+3cosx | ||
∫ | dx = 2J1+3J2 = | |
| sin2xcosx+2cos3x |
| 3√2 |
| 3√2 |
| |||||||||||||||||||||||
+ | arctg( | ) + | arctg( | ) + C | ||||||||||||||||||||||
| 4 | 2 | 4 | 2 |
:
cosx
a) ∫ −−−−−−−−−−−−−−−
√9 − sin2x
| cosx | cosx | |||||||||||||||||||||
∫ | dx = ∫ | dx = | ||||||||||||||||||||
|
|
| sinx | 1 | |||
t= | , dt= | cosxdx, cosxdx=3dt | ||
| 3 | 3 |
| 1 | 3dt | dt | sinx | |||||
= | ∫ | = ∫ | = arcsint = arcsin( | ) + C | ||||
| 3 | √1−t2 | √1−t2 | 3 |
1

| x3 | x3 | dx | x3 | 1 | ||||||
J = u*v − ∫vdu = | *lnx − ∫ | * | = | *lnx − | ∫x2dx | |||||
| 3 | 3 | x | 3 | 3 |
| x3 | 1 | x3 | x3 | 1 | ||||||
J = | *lnx − | * | = | *(lnx − | ) | |||||
| 3 | 3 | 3 | 3 | 3 |
| x3 | 1 | |||
Jo = | *(lnx − | ) |[1,e] | ||
| 3 | 3 |
| e3 | 1 | 1 | 1 | |||||
Jo = [ | *(lne − | ] − [ | *(ln1 − | ] = | ||||
| 3 | 3 | 3 | 3 |
| e3 | 1 | 1 | 1 | e3 | 2 | 1 | |||||||
*(1 − | ) − | *(0 − | ) = | * | + | = | |||||||
| 3 | 3 | 3 | 3 | 3 | 3 | 9 |
| 1 | ||
= | *(2*e3 + 1) | |
| 9 |