| 64p2u | 3 | |||
− | =− | |||
| 5u3 | 4 |
| 256p2 | |
=1 | |
| 15u2 |
| 256p2*15 | ||
u2= | ||
| 225 |
| 16√15 | ||
u= | p | |
| 15 |
| 16√15 | ||
y = | pcos(t) | |
| 15 |
| 4096*75√15 | 1024*225√15 | ||
p3cos3(t)− | p3cos(t)=64p3 | ||
| 3375 | 3375 |
| 3375 | ||
4cos3(t)−3cos(t)=64* | ||
| 1024*75*√15 |
| 3√15 | ||
4cos3(t)−3cos(t)= | ||
| 16 |
| 3√15 | ||
cos(3t)= | ||
| 16 |
| 16√15 | 1 | 3√15 | ||||
y1 = | pcos( | arccos( | )) | |||
| 15 | 3 | 16 |
| 16√15 | 1 | 3√15 | ||||
y2 = | pcos( | (arccos( | )+2π)) | |||
| 15 | 3 | 16 |
| 16√15 | 1 | 3√15 | ||||
y3 = | pcos( | (arccos( | )+4π)) | |||
| 15 | 3 | 16 |
| 16√15 | 1 | 3√15 | ||||
x1=p(1+ | cos( | arccos( | ))) | |||
| 15 | 3 | 16 |
| 16√15 | 1 | 3√15 | ||||
x2=p(1+ | cos( | (arccos( | )+2π))) | |||
| 15 | 3 | 16 |
| 16√15 | 1 | 3√15 | ||||
x3=p(1+ | cos( | (arccos( | )+4π))) | |||
| 15 | 3 | 16 |
| 5+2√5 | ||
x2=− | p | |
| 5 |
| 5−2√5 | ||
x3=− | p | |
| 5 |
| 104p2 | ||
czy wyszło | ![]() | |
| 3√ 5 |