PABCD=35a
PABCD=1/2p*q*sin(α+β)
25=(7a)2+p2−2*7apcosα
25=(7a)2+q2−2*7aqcosβ
_________________________
0=p2−q2−14apcosα+14aqcosβ
| H2 | H | H2 | H | |||||
cosα= | = | cosβ= | = | |||||
| 2p | p | 2q | q |
| H | H | |||
0=p2−q2−14ap | +14aq | |||
| p | q |
AM=√25+9a2 BM=√25+16a2
z tw. cosinusów dla ABM
49a2=25+9a2+25+16a2−2*√25+9a2√25+16a2cos2α
| 49a2 | ||
cos2α=1−sin2α=1−2 | ||
| √25+49a2 |
| 3 | ||
PABCD=35a=205√ | ||
| 73 |