| x − 1 | ||
Rozwiąż √x − 1/x + √1 − 1/x> | ||
| x |
| 1 | x−1 | |||
w pierwszym pierwiastku jest x − | czy też | ![]() | ||
| x | x |
| 1 | 1 | x−1 | ||||
√x− | +√1− | > | ||||
| x | x | x |
| 1 | 1 | |||
x− | ≥0 ∧ 1− | ≥0 ∧ x≠0 | ||
| x | x |
| x−1 | ||
2) Nierówność spełniona, gdy | <0, tzn. gdy x∊(0;1) (dziedzina) | |
| x |
| 1 | 1 | 1 | 1 | 1 | ||||||
x− | +1− | +2√(x− | )(1− | )>(1− | )2 | |||||
| x | x | x | x | x |
| 1 | 1 | 1 | ||||
x+2√(x− | )(1− | )> | ||||
| x | x | x2 |
| 1 | 1 | 1 | ||||
2√(x− | )(1− | )> | −x | |||
| x | x | x2 |
| 1 | 1 | x3 | ||||
−x<0 ⇔ | − | <0 ⇔ x2(x−1)>0 ⇔ x>1 | ||||
| x2 | x2 | x2 |
| 1 | 1 | 1 | ||||
4(x− | )(1− | )>( | −x)2 | |||
| x | x | x2 |
| 4 | 1 | 1 | ||||
(4x− | )(1− | )>( | −x)2 | |||
| x | x | x2 |
| 4 | 4 | 1 | 2 | |||||
4x−4− | + | > | +x2− | | x4 | ||||
| x | x2 | x4 | x |