π | π | |||
Jak udowodnić tg(3x)=tg ( | −x) * tg(x) *tg ( | +x) geometrycznie? | ||
3 | 3 |
tg60o−tgx | tg60o+tgx | |||
P=tgx* | * | = | ||
1+tg600*tgx | 1−tg600*tgx |
√3−tgx | √3+tgx | |||
=tgx* | * | = | ||
1+√3tgx | 1−√3tgx |
3−tg2x | ||
=tgx* | =tg(3x) | |
1−3tg2x |
tg(2x)+tgx |
| ||||||||||||
L=tg(3x)= | = | = | |||||||||||
1−tgx*tg(2x) |
|
2tgx+tgx*(1−tg2x) | ||
= | = | |
1−tg2x−2tg2x |
3−tg2x | ||
=tgx* | ||
1−3tg2x |