| 3 | 5 | |||
Wykaż że | <|k|≤ | . | ||
| 2 | 2 |
| π | 2jπ | |||
arctg(x) = | + | |||
| 4k | k |
| π | 2*(−1)π | π | π | 2*1*π | π | |||||||
1) | + | < − | ∧ | + | < | ∧ k > 0 | ||||||
| 4k | k | 2 | 4k | k | 2 |
| π | 2*(−1)π | π | π | 2*1*π | π | |||||||
2) | + | > | ∧ | + | > − | ∧ k < 0 | ||||||
| 4k | k | 2 | 4k | k | 2 |
| π | 2*(−1)π | π | π | 2*1*π | π | |||||||
3) | + | > − | ∧ | + | > | ∧ k > 0 | ||||||
| 4k | k | 2 | 4k | k | 2 |
| π | 2*(−1)π | π | π | 2*1*π | π | |||||||
4) | + | < | ∧ | + | < − | ∧ k < 0 | ||||||
| 4k | k | 2 | 4k | k | 2 |
| π | ||
(ponieważ jednym z rozwiązań będzie | + 0) −−− co oczywiście warto by było jeszcze | |
| 4k |
| π | −2π | π | 2π | |||||
1) | + | ∊ (−π/2 ; π/2 ) ∧ | + | ∉ (−π/2 ; π/2 ) | ||||
| 4k | k | 4k | k |
| π | −2π | π | 2π | |||||
2) | + | ∉ (−π/2 ; π/2 ) ∧ | + | ∊ (−π/2 ; π/2 ) | ||||
| 4k | k | 4k | k |