x−y | ||
Oblicz ∫x=01/2 ∫y=x1−x ( | )2 dydx | |
x+y |
(x−y)2 | (x−y)2 | 2(x−y)(−1) | ||||
∫ | dy = − | −∫− | dy | |||
(x+y)2 | x+y | x+y |
(x−y)2 | (x−y)2 | x−y | ||||
∫ | dy = − | −2∫ | dy | |||
(x+y)2 | x+y | x+y |
(x−y)2 | (x−y)2 | −x−y+2x | ||||
∫ | dy = − | −2∫ | dy | |||
(x+y)2 | x+y | x+y |
(x−y)2 | (x−y)2 | 1 | ||||
∫ | dy = − | −2∫1dy+4x∫ | dy | |||
(x+y)2 | x+y | x+y |
(x−y)2 | (x−y)2 | |||
∫ | dy = − | −2y+4xln(x+y) | ||
(x+y)2 | x+y |
(x−y)2 | ||
∫x1−x{ | dy=−4x2+8x−3−4xln(2)−4xln(x) | |
(x+y)2 |
4 | ||
∫(−4x2+8x−3−4xln(2)−4xln(x))dx = − | x3+4x2−3x−2x2ln(2)−(2x2ln(x)−x2) | |
3 |
4 | ||
∫(−4x2+8x−3−4xln(2)−4xln(x))dx = − | x3+4x2−3x−2x2ln(2)−2x2ln(x)+x2 | |
3 |
4 | ||
∫(−4x2+8x−3−4xln(2)−4xln(x))dx = − | x3+5x2−3x−2x2ln(2)−2x2ln(x) | |
3 |
(x−y)2 | (x−y)2 | |||
∫ | dy=− | +2y−4xln(x+y)+C | ||
(x+y)2 | x+y |
u−v | ||
x= | ||
2 |
u+v | ||
y= | ||
2 |
1 | v2 | 1 | v3 | |||||
całka = | ∫01du ∫0u | dv = | ∫01 [ | ]v=0u du | ||||
4 | u2 | 4*3 | u2 |
1 | 1 | |||
= | ∫01 v dv = | |||
12 | 24 |
1 | ||
Na pewno | ? | |
24 |
1 | ||
Mnie wyszło | ||
12 |