| t sin(t) | ||
Oblicz ∫0π | dt dla x∊R | |
| x + cos2(t) |
| t sin(t) | ||
∫0π | dt | |
| x+cos2(t) |
| (π−y)sin(π−y) | ||
∫π0 | (−1)dy | |
| x+cos2(π−y) |
| t sin(t) | (π−y)sin(y) | |||
∫0π | dt = ∫0π | dy | ||
| x+cos2(t) | x+cos2(y) |
| t sin(t) | sin(t) | |||
2∫0π | dt = π∫0π | dt | ||
| x+cos2(t) | x+cos2(t) |
| t sin(t) | π | sin(t) | ||||
∫0π | dt = | ∫0π | dt | |||
| x+cos2(t) | 2 | x+cos2(t) |
| sin(t) | ||
∫0π | dt | |
| x+cos2(t) |
| 1 | ||
∫1−1 | (−du) | |
| x+u2 |
| 1 | ||
∫−11 | du | |
| x+u2 |
| 1 | ||
2∫01 | du | |
| x+u2 |