| 1−2x2 | ||
∫−11 | dx | |
| √(1−x2)(x4−x2+1) |
| 1−2x2 | ||
2∫01 | dx | |
| √(1−x2)(x4−x2+1) |
| x | ||
t= | ||
| √1−x2 |
| |||||||||||
dt= | dx | ||||||||||
| 1−x2 |
| 1 | ||
dt= | dx | |
| (1−x2)√1−x2 |
| x2 | ||
t2= | ||
| 1−x2 |
| x2−1+1 | ||
t2= | ||
| 1−x2 |
| 1 | ||
t2=−1+ | ||
| 1−x2 |
| 1 | ||
t2+1= | ||
| 1−x2 |
| 1 | |
=1−x2 | |
| 1+t2 |
| 1 | ||
x2=1− | ||
| 1+t2 |
| t2 | ||
x2= | ||
| 1+t2 |
| (1−2x2)(1−x2) | ||
2∫01 | dx | |
| (1−x2)√1−x2√x4−x2+1 |
| (1−2x2)(1−x2) | |
| √x4−x2+1 |
| 2t2 | t2 | |||
(1− | )(1− | ) | ||
| 1+t2 | 1+t2 |
| 1−t2 | |
| (1+t2)2 |
| t2(1+t2) | (1+t2)2 | |||
U{t4}{(1+t2)2− | + | |||
| (1+t2)2 | (1+t2)2 |
| t4−t2−t4+1+2t2+t4 | |
| (1+t2)2 |
| t4+t2+1 | |
| (t2+1)2 |
| ||||||||
2∫0∞ | dt | |||||||
|
| 1−t2 | t2+1 | ||
2∫0∞ | dt | ||
| (t2+1)2 | √t4+t2+1 |
| t2−1 | ||
−2∫0∞ | dt | |
| (t2+1)√t4+t2+1 |
| |||||||||||
−2∫ | dt | ||||||||||
|
| |||||||||||
−2∫ | dt | ||||||||||
|
| |||||||||||
−2∫ | dt | ||||||||||
|
| 1 | ||
y = t + | ||
| t |
| 1 | ||
dy = (1 − | ) dt | |
| t2 |
| 1 | ||
−2∫ | dy | |
| y√y2−1 |
| y | ||
du = | dy | |
| √y2−1 |
| y | 1 | |||
−2∫ | dy=−2∫ | du | ||
| y2√y2−1 | u2+1 |
| √t4+t2+1 | ||
−2arctg( | )+C1 | |
| t |
| t | ||
=2arctg( | )+C2 | |
| √t4+t2+1 |
| t | ||
=limt→∞ 2arctg( | ) −arctg(0)) | |
| √t4+t2+1 |
| 1 − 2x2 | ||
S = 2 0∫1 | dx | |
| √(1 − x2)(x4 − x2 + 1) |
| 1 − 2sin2y | ||
S = 2 0∫π/2 | cosy dy | |
| √cos2y(sin4y − sin2y + 1) |
| cos(2y) | ||
S = 2 0∫π/2 | dy | |
| √sin4y − sin2y + 1 |
| cos(2y) | ||
S = 2 0∫π/2 | dy | |
| √sin4y + cos2y |
| π | ||
y = u + | ||
| 4 |
| cos(2u+π/2) | ||
S = 2 −π/4∫π/4 | du | |
| √sin4(u+π/4) + cos2((u+π/4) |
| −sin(2u)) | ||
S = 2 −π/4∫π/4 | du | |
| √sin4(u+π/4) + cos2((u+π/4) |
| √2 | √2 | √2 | √2 | |||||
Pierwiastek = ( | cosu + | sinu)4 + ( | cosu − | sinu)2 = | ||||
| 2 | 2 | 2 | 2 |
| −sin(2u)) | ||
S = 2 −π/4∫π/4 | du | |
| √3/4 + sin2u cos2u |
| −ydy | ||
Zamiana zmiennych x=√1−y2, dx = | daje nam całkę | |
| √1−y2 |
| 1−2y2 | ||
∫10 | dy | |
| √(1−y2)(1−y2+y4) |