1−2x2 | ||
∫−11 | dx | |
√(1−x2)(x4−x2+1) |
1−2x2 | ||
2∫01 | dx | |
√(1−x2)(x4−x2+1) |
x | ||
t= | ||
√1−x2 |
| |||||||||||
dt= | dx | ||||||||||
1−x2 |
1 | ||
dt= | dx | |
(1−x2)√1−x2 |
x2 | ||
t2= | ||
1−x2 |
x2−1+1 | ||
t2= | ||
1−x2 |
1 | ||
t2=−1+ | ||
1−x2 |
1 | ||
t2+1= | ||
1−x2 |
1 | |
=1−x2 | |
1+t2 |
1 | ||
x2=1− | ||
1+t2 |
t2 | ||
x2= | ||
1+t2 |
(1−2x2)(1−x2) | ||
2∫01 | dx | |
(1−x2)√1−x2√x4−x2+1 |
(1−2x2)(1−x2) | |
√x4−x2+1 |
2t2 | t2 | |||
(1− | )(1− | ) | ||
1+t2 | 1+t2 |
1−t2 | |
(1+t2)2 |
t2(1+t2) | (1+t2)2 | |||
U{t4}{(1+t2)2− | + | |||
(1+t2)2 | (1+t2)2 |
t4−t2−t4+1+2t2+t4 | |
(1+t2)2 |
t4+t2+1 | |
(t2+1)2 |
| ||||||||
2∫0∞ | dt | |||||||
|
1−t2 | t2+1 | ||
2∫0∞ | dt | ||
(t2+1)2 | √t4+t2+1 |
t2−1 | ||
−2∫0∞ | dt | |
(t2+1)√t4+t2+1 |
| |||||||||||
−2∫ | dt | ||||||||||
|
| |||||||||||
−2∫ | dt | ||||||||||
|
| |||||||||||
−2∫ | dt | ||||||||||
|
1 | ||
y = t + | ||
t |
1 | ||
dy = (1 − | ) dt | |
t2 |
1 | ||
−2∫ | dy | |
y√y2−1 |
y | ||
du = | dy | |
√y2−1 |
y | 1 | |||
−2∫ | dy=−2∫ | du | ||
y2√y2−1 | u2+1 |
√t4+t2+1 | ||
−2arctg( | )+C1 | |
t |
t | ||
=2arctg( | )+C2 | |
√t4+t2+1 |
t | ||
=limt→∞ 2arctg( | ) −arctg(0)) | |
√t4+t2+1 |
1 − 2x2 | ||
S = 2 0∫1 | dx | |
√(1 − x2)(x4 − x2 + 1) |
1 − 2sin2y | ||
S = 2 0∫π/2 | cosy dy | |
√cos2y(sin4y − sin2y + 1) |
cos(2y) | ||
S = 2 0∫π/2 | dy | |
√sin4y − sin2y + 1 |
cos(2y) | ||
S = 2 0∫π/2 | dy | |
√sin4y + cos2y |
π | ||
y = u + | ||
4 |
cos(2u+π/2) | ||
S = 2 −π/4∫π/4 | du | |
√sin4(u+π/4) + cos2((u+π/4) |
−sin(2u)) | ||
S = 2 −π/4∫π/4 | du | |
√sin4(u+π/4) + cos2((u+π/4) |
√2 | √2 | √2 | √2 | |||||
Pierwiastek = ( | cosu + | sinu)4 + ( | cosu − | sinu)2 = | ||||
2 | 2 | 2 | 2 |
−sin(2u)) | ||
S = 2 −π/4∫π/4 | du | |
√3/4 + sin2u cos2u |
−ydy | ||
Zamiana zmiennych x=√1−y2, dx = | daje nam całkę | |
√1−y2 |
1−2y2 | ||
∫10 | dy | |
√(1−y2)(1−y2+y4) |