całka
amcavoy: Jak obliczyć ∫01 [x3m + x2m + xm]*[2x2m + 3xm + 6]1/m dx
5 lip 08:02
wakacje: pomysł na początek zaczerpnięty z internetu:
(x
3m+x
2m+x
m)(2x
2m+3x
m+6)
1/m=
=x(x
3m−1+x
2m−1+x
m−1)(2x
2m+3x
m+6)
1/m=
=(x
3m−1+x
2m−1+x
m−1)*x(2x
2m+3x
m+6)
1/m=
=(x
3m−1+x
2m−1+x
m−1)*[x
m(2x
2m+3x
m+6)]
1/m=
=(x
3m−1+x
2m−1+x
m−1)*(2x
3m+3x
2m+6x
m))
1/m
t=2x
3m+3x
2m+6x
m → dt=6m(x
3m−1+x
2m−1+x
m−1)dx
∫(x
3m+x
2m+x
m)(2x
2m+3x
m+6)
1/mdx=
=∫((x
3m−1+x
2m−1+x
m−1)*(2x
3m+3x
2m+6x
m))
1/m)dx=
| t(1/m)+1 | | (2x3m+3x2m+6xm)(1/m)+1 | |
= |
| = |
| |
| 6(m+1) | | 6(m+1) | |
stąd:
01∫((x
3m+x
2m+x
m)(2x
2m+3x
m+6)
1/m)dx=
| (2x3m+3x2m+6xm)(1/m)+1 | |
=[ |
| ]01= |
| 6(m+1) | |
| (2*13m+3*12m+6*1m)(1/m)+1 | |
=( |
| )− |
| 6(m+1) | |
| (2*03m+3*02m+6*0m)(1/m)+1 | |
−( |
| )= |
| 6(m+1) | |
6 lip 01:04