4x * √y * log(x) | ||
Rozwiąż równanie y' = | przy y(1) = 1. | |
(x2+1)2 |
y' | 4xlog(x) | ||
= | |||
√y | (x2+1)2 |
y' | 8xlog(x) | ||
= | |||
2√y | (x2+1)2 |
dy | 8xlog(x) | ||
= | dx | ||
2√y | (x2+1)2 |
8xlog(x) | ||
Całkę ∫ | dx | |
(x2+1)2 |
y' | 2xlog(x) | ||
= | |||
2√y | (x2+1)2 |
log(x) | log(x2+1) | |||
√y = − | + log|x| − | + c ![]() | ||
x2+1 | 2 |
2x | ||
du = | dx v = log(x) | |
(x2+1)2 |
2x | ||
du = | dx v = log(x) | |
(x2+1)2 |
1 | 1 | |||
u = − | dv = | dx | ||
x2+1 | x |
2xlog(x) | log(x) | 1 | ||||
∫ | dx = − | +∫ | dx | |||
(x2+1)2 | x2+1 | x(x2+1) |
2xlog(x) | log(x) | 1+x2−x2 | ||||
∫ | dx = − | +∫ | dx | |||
(x2+1)2 | x2+1 | x(x2+1) |
2xlog(x) | log(x) | 1 | x | |||||
∫ | dx = − | +∫ | dx−∫ | dx | ||||
(x2+1)2 | x2+1 | x | x2+1 |
2xlog(x) | log(x) | 1 | ||||
∫ | dx = − | +log|x|− | log(x2+1)+C | |||
(x2+1)2 | x2+1 | 2 |
log(2) | ||
1 = − | +C | |
2 |
log(2) | ||
C=1+ | ||
2 |
5^2 | 52 |
2^{10} | 210 |
a_2 | a2 |
a_{25} | a25 |
p{2} | √2 |
p{81} | √81 |
Kliknij po więcej przykładów | |
---|---|
Twój nick | |