xy | 1 | |||
Pomoże ktoś z tym równaniem y'+ | = | |||
1+x2 | x(1+x2) |
C | ||
y= | ||
√1+x2 |
C(x) | ||
y= | ||
√1+x2 |
1 | ||
C'(x)= | ||
x(1+x2) |
dx | ||
mi wychodzi C(x)=∫ | ||
x√x2+1 |
1 | ||
Jak działa to podstawienie? dx= | i co dalej? | |
cos2x |
1 | 1 | |||
podstawienie: x=tan(t) → x2+1=tan2(t)+1= | , stąd √x2+1= | |||
cos2(t) | cos(t) |
1 | ||
dx= | dt | |
cos2(t) |
dx | ||
∫ | = | |
x√x2+1 |
1 | 1 | |||
=∫ | * | *dx= | ||
x | √x2+1 |
cos(t) | dt | |||
=∫ | *cos(t)* | = | ||
sin(t) | cos2(t) |
dt | ||
=∫ | =... | |
sin(t) |
1 | x | |||
∫ | dx=∫ | dx | ||
x√x2+1 | x2√x2+1 |
t | ||
∫ | dt= | |
t(t2−1) |
1 | ||
∫ | dt | |
t2−1 |
1 | ||
∫ | dx | |
x√x2+1 |
2t | ||
x= | ||
t2−1 |
2t2−t2+1 | ||
xt−1= | ||
t2−1 |
t2+1 | ||
xt−1= | ||
t2−1 |
2(t2−1)−2t*2t | ||
dx = | dt | |
(t2−1)2 |
−2t2−2 | ||
dx = | dt | |
(t2−1)2 |
t2−1 | t2−1 | (−2)(t2+1) | ||
∫ | dt | |||
2t | t2+1 | (t2−1)2 |
1 | ||
−∫ | dt | |
t |
√x2+1+1 | ||
=−ln| | |+C | |
x |
x | ||
=ln| | |+C | |
√x2+1+1 |
x(√x2+1−1) | ||
=ln| | |+C | |
(x2+1)−1 |
x(√x2+1−1) | ||
=ln| | |+C | |
x2 |
√x2+1−1 | ||
=ln| | |+C | |
x |
udu | ||
u=√x2+1, x=√u2−1, dx= | ||
√u2−1 |
1 | udu | du | ||||
całka = ∫ | * | = ∫ | ||||
u √u2−1 | √u2−1 | u2−1 |
1 | 1 | 1 | 1 | u−1 | ||||||
= | ∫( | − | ) du = | ln | ||||||
2 | u−1 | u+1 | 2 | u+1 |
1 | √x2+1 −1 | |||
= | ln | |||
2 | √x2+1+1 |