| xy | 1 | |||
Pomoże ktoś z tym równaniem y'+ | = | |||
| 1+x2 | x(1+x2) |
| C | ||
y= | ||
| √1+x2 |
| C(x) | ||
y= | ||
| √1+x2 |
| 1 | ||
C'(x)= | ||
| x(1+x2) |
| dx | ||
mi wychodzi C(x)=∫ | ||
| x√x2+1 |
| 1 | ||
Jak działa to podstawienie? dx= | i co dalej? | |
| cos2x |
| 1 | 1 | |||
podstawienie: x=tan(t) → x2+1=tan2(t)+1= | , stąd √x2+1= | |||
| cos2(t) | cos(t) |
| 1 | ||
dx= | dt | |
| cos2(t) |
| dx | ||
∫ | = | |
| x√x2+1 |
| 1 | 1 | |||
=∫ | * | *dx= | ||
| x | √x2+1 |
| cos(t) | dt | |||
=∫ | *cos(t)* | = | ||
| sin(t) | cos2(t) |
| dt | ||
=∫ | =... | |
| sin(t) |
| 1 | x | |||
∫ | dx=∫ | dx | ||
| x√x2+1 | x2√x2+1 |
| t | ||
∫ | dt= | |
| t(t2−1) |
| 1 | ||
∫ | dt | |
| t2−1 |
| 1 | ||
∫ | dx | |
| x√x2+1 |
| 2t | ||
x= | ||
| t2−1 |
| 2t2−t2+1 | ||
xt−1= | ||
| t2−1 |
| t2+1 | ||
xt−1= | ||
| t2−1 |
| 2(t2−1)−2t*2t | ||
dx = | dt | |
| (t2−1)2 |
| −2t2−2 | ||
dx = | dt | |
| (t2−1)2 |
| t2−1 | t2−1 | (−2)(t2+1) | ||
∫ | dt | |||
| 2t | t2+1 | (t2−1)2 |
| 1 | ||
−∫ | dt | |
| t |
| √x2+1+1 | ||
=−ln| | |+C | |
| x |
| x | ||
=ln| | |+C | |
| √x2+1+1 |
| x(√x2+1−1) | ||
=ln| | |+C | |
| (x2+1)−1 |
| x(√x2+1−1) | ||
=ln| | |+C | |
| x2 |
| √x2+1−1 | ||
=ln| | |+C | |
| x |
| udu | ||
u=√x2+1, x=√u2−1, dx= | ||
| √u2−1 |
| 1 | udu | du | ||||
całka = ∫ | * | = ∫ | ||||
| u √u2−1 | √u2−1 | u2−1 |
| 1 | 1 | 1 | 1 | u−1 | ||||||
= | ∫( | − | ) du = | ln | ||||||
| 2 | u−1 | u+1 | 2 | u+1 |
| 1 | √x2+1 −1 | |||
= | ln | |||
| 2 | √x2+1+1 |