| dx | ||
∫ | ,robie to tak | |
| sin3x*cosx |
| dx | sinxcosxdx | |||
∫ | = ∫ | |||
| sin3x*cosx | sin4x*cos2x |
| 1 | dt | |||
|t = sin2x,dt = 2sinxcosx| = | ∫ | no i potem niestety ulamki | ||
| 2 | t2*(1−t2) |
| dx | sin2x + cos2x | 1 | cosx | |||||
∫ | = ∫ | dx = ∫ | dx + ∫ | dx | ||||
| sin3xcosx | sin3xcosx | sinxcosx | sin3x |
| 1 | 1 | 1 | ||||
∫ | dx = ∫ | * | dx | |||
| sinxcosx | cos2x | tgx |
| 1 | 1 | 1 | 1−t2+t2 | ||||
∫ | dt= | ∫ | dt | ||||
| 2 | t2(1−t) | 2 | t2(1−t) |
| 1 | 1 | 1 | (1−t)(1+t) | 1 | 1 | ||||||
∫ | dt= | ∫ | dt+ | ∫ | dt | ||||||
| 2 | t2(1−t) | 2 | t2(1−t) | 2 | 1−t |
| 1 | 1 | 1 | (1+t) | 1 | 1 | ||||||
∫ | dt= | ∫ | dt+ | ∫ | dt | ||||||
| 2 | t2(1−t) | 2 | t2 | 2 | 1−t |
| 1 | 1 | 1 | 1 | 1 | 1 | 1 | −1 | ||||||||
∫ | dt= | ∫ | dt+ | ∫ | dt− | ∫ | dt | ||||||||
| 2 | t2(1−t) | 2 | t2 | 2 | t | 2 | 1−t |
| dx | sin x | cos x | ||||
∫ | =∫( | + | ) dx=−ln (cos x) +ln (sin x) +C | |||
| sin x cos x | cos x | sin x |