6x2+3x+6 | ||
∫ | dx | |
√3x2+3x+7 |
t2−7 | ||
x= | ||
3+2√3t |
3t+2√3t2−√3t2+7√3 | ||
t−√3x= | ||
3+2√3t |
√3t2+3t+7√3 | ||
t−√3x= | ||
3+2√3t |
2t(3+2√3t)−2√3(t2−7) | ||
dx = | dt | |
(3+2√3t)2 |
2√3t2+6t+14√3 | ||
dx = | dt | |
(3+2√3t)2 |
t2−7 | ||
x= | ||
3+2√3t |
√3t2+3t+7√3 | ||
√3x2+3x+7= | ||
3+2√3t |
√3t2+3t+7√3 | ||
dx=2 | dt | |
(3+2√3t)2 |
6x2+3x+6 | 2x(6x+3) | 1 | ||||
∫ | dx=∫ | dx+6∫ | dx | |||
√3x2+3x+7 | 2√3x2+3x+7 | √3x2+3x+7 |
6x2+3x+6 | 1 | |||
∫ | dx=2x√3x2+3x+7−∫2√3x2+3x+7dx+6∫ | dx | ||
√3x2+3x+7 | √3x2+3x+7 |
6x2+3x+6 | 6x2+3x+6+3x+2 | |||
∫ | dx=2x√3x2+3x+7−∫ | dx | ||
√3x2+3x+7 | √3x2+3x+7 |
6x2+3x+6 | 3x+2 | |||
2∫ | dx=2x√3x2+3x+7−∫ | dx | ||
√3x2+3x+7 | √3x2+3x+7 |
6x2+3x+6 | 6x+3+1 | |||
2∫ | dx=2x√3x2+3x+7−∫ | dx | ||
√3x2+3x+7 | 2√3x2+3x+7 |
6x2+3x+6 | 6x+3 | |||
2∫ | dx=2x√3x2+3x+7−∫ | dx | ||
√3x2+3x+7 | 2√3x2+3x+7 |
1 | 1 | |||
− | ∫ | dx | ||
2 | √3x2+3x+7 |
6x2+3x+6 | 1 | 1 | ||||
2∫ | dx=(2x−1)√3x2+3x+7− | ∫ | dx | |||
√3x2+3x+7 | 2 | √3x2+3x+7 |
6x2+3x+6 | 1 | 1 | 1 | |||||
∫ | dx= | (2x−1)√3x2+3x+7− | ∫ | dx | ||||
√3x2+3x+7 | 2 | 4 | √3x2+3x+7 |
1 | ||
∫ | dx | |
√3x2+3x+7 |
t2−7 | ||
x= | ||
3+2√3t |
3t+2√3t2−√3t2+7√3 | ||
t−√3x= | ||
3+2√3t |
√3t2+3t+7√3 | ||
t−√3x= | ||
3+2√3t |
2t(3+2√3t)−2√3(t2−7) | ||
dx = | dt | |
(3+2√3t)2 |
2√3t2+6t+14√3 | ||
dx = | dt | |
(3+2√3t)2 |
√3t2+3t+7√3 | ||
dx = 2 | dt | |
(3+2√3t)2 |
1 | 3+2√3t | √3t2+3t+7√3 | ||||
∫ | dx=∫ | ( 2 | dt) | |||
√3x2+3x+7 | √3t2+3t+7√3 | (3+2√3t)2 |
1 | 2 | |||
∫ | dx=∫ | dt | ||
√3x2+3x+7 | 3+2√3t |
1 | √3 | 2√3 | ||||
∫ | dx= | ∫ | dt | |||
√3x2+3x+7 | 3 | 3+2√3t |
1 | √3 | |||
∫ | dx= | ln|2√3t+3|+C | ||
√3x2+3x+7 | 3 |
1 | √3 | |||
∫ | dx= | ln|6x+3+2√3√3x2+3x+7|+C | ||
√3x2+3x+7 | 3 |
6x2+3x+6 | 1 | 1 | 1 | |||||
∫ | dx= | (2x−1)√3x2+3x+7− | ∫ | dx | ||||
√3x2+3x+7 | 2 | 4 | √3x2+3x+7 |
6x2+3x+6 | 1 | |||
∫ | dx= | (2x−1)√3x2+3x+7 | ||
√3x2+3x+7 | 2 |
√3 | ||
− | ln|6x+3+2√3√3x2+3x+7|+C | |
12 |