sin2(7x) | ||
Jak policzyć te całkę ∫ 0π/4 | dx | |
sin2x |
sin2(7x) | ||
∫0π/4 | dx= | |
sin2x |
cos(x) | 7sin(14x)cos(x) | |||
− | sin2(7x)|0π/4+∫0π/4 | dx= | ||
sin(x) | sin(x) |
1 | sin(14x)cos(x) | |||
− | +7∫0π/4 | dx | ||
2 | sin(x) |
1 | 7 | 2sin(14x)cos(x) | ||||
− | + | ∫0π/4 | dx= | |||
2 | 2 | sin(x) |
1 | 7 | sin(15x)+sin(13x) | ||||
− | + | ∫0π/4 | dx | |||
2 | 2 | sin(x) |
1 | 7 | sin(15x) | 7 | sin(13x) | ||||||
− | + | ∫0π/4 | dx+ | ∫0π/4 | dx | |||||
2 | 2 | sin(x) | 2 | sin(x) |
1 | sin((n+1)x)+sin(nx) | |||
∑k=0ncos(kx) = | (1+ | ) | ||
2 | sin(x) |