matematykaszkolna.pl
całka maks: Oblicz ∫0π/2 cosx*ln(sin3x + cos3x)dx
1 cze 17:25
Mariusz:0π/2cos(x)ln(sin3x+cos3x)dx Nieoznaczoną przez części ∫cos(x)ln(sin3x+cos3x)dx=sin(x)ln(sin3x+cos3x)−
 (3sin2xcosx−3cos2xsinx)sinx 

dx
 sin3x+cos3x 
1 cze 18:22
Mariusz: ∫cos(x)ln(sin3(x)−cos3(x))dx=sin(x)ln(sin3(x)+cos3(x))−
 sin3xcosx−cos2(x)sin2(x) 
3∫

dx
 sin3(x)+cos3(x) 
 sin3xcosx−cos2(x)sin2(x) 

dx
 sin3(x)+cos3(x) 
cos(x)=(1−sin(x))t cos2(x)=(1−sin(x))2t2 1−sin2(x)=(1−sin(x))2t2 (1+sin(x))(1−sin(x))=(1−sin(x))2t2 (1−sin(x))(1+sin(x)−(1−sin(x))t2)=0 1+sin(x)−(1−sin(x))t2=0 1+sin(x)−t2+sin2(x)t2=0 sin(x)(t2+1)=t2−1
 t2−1 
sin(x)=

 t2+1 
 t2+1−t2+1 
cos(x)=(

)*t
 t2+1 
 2t 
cos(x)=

 t2+1 
 t2−1 
sin(x)=

 t2+1 
 2t(t2+1)−2t(t2−1) 
cos(x)dx=

dt
 (t2+1)2 
 2t2 
cos(x)dx=


dt
 t2+1t2+1 
2t 2t2 

dx=


dt
t2+1 t2+1t2+1 
 2 
dx=

dt
 t2+1 
 sin3xcosx−cos2(x)sin2(x) 

dx
 sin3(x)+cos3(x) 
 2t(t2−1)3−4t2(t2−1)2(t2+1)32 



dt
 (t2+1)4(t2−1)3+(2t)3t2+1 
 (t2−1)2(t3−2t2−t) 
4∫

 (t2+2t−1)(t4−2t2+1−2t3+2t+4t2)(t2+1)2 
 (t2−1)2(t3−2t2−t) 
4∫

dt
 (t2+1)2(t2+2t−1)(t4−2t3+2t2+2t+1) 
t4−2t3+2t2+2t+1 (t4−2t3)−(−2t2−2t−1) (t4−2t3+t2)−(−t2−2t−1) (t2−t)2−(−t2−2t−1)
 y y2 
(t2−t+

)2−((y−1)t2+(−y−2)t+

−1)
 2 4 
 y2 
4(

−1)(y−1)−(y+2)2=0
 4 
(y2−4)(y−1)−(y+2)2=0 (y−2)(y+2)(y−1)−(y+2)2=0 (y+2)(y2−3y+2−y−2)=0 y(y+2)(y−4)=0
 y y2 
(t2−t+

)2−((y−1)t2+(−y−2)t+

−1)
 2 4 
(t2−t+2)2−(3t2 −6t+3) (t2−t+2)2−(3t−3)2 (t2−(1−3)t+2−3)(t2−(1+3)t+2+3)
 (t2−1)2(t3−2t2−t) 
4∫

dt
 (t2+1)2(t2+2t−1)(t2−(1−3)t+2−3)(t2−(1+3)t+2+3) 
I teraz rozkład na sumę ułamków prostych
1 cze 21:01