(3sin2xcosx−3cos2xsinx)sinx | ||
∫ | dx | |
sin3x+cos3x |
sin3xcosx−cos2(x)sin2(x) | ||
3∫ | dx | |
sin3(x)+cos3(x) |
sin3xcosx−cos2(x)sin2(x) | ||
∫ | dx | |
sin3(x)+cos3(x) |
t2−1 | ||
sin(x)= | ||
t2+1 |
t2+1−t2+1 | ||
cos(x)=( | )*t | |
t2+1 |
2t | ||
cos(x)= | ||
t2+1 |
t2−1 | ||
sin(x)= | ||
t2+1 |
2t(t2+1)−2t(t2−1) | ||
cos(x)dx= | dt | |
(t2+1)2 |
2t | 2 | ||
cos(x)dx= | dt | ||
t2+1 | t2+1 |
2t | 2t | 2 | ||
dx= | dt | |||
t2+1 | t2+1 | t2+1 |
2 | ||
dx= | dt | |
t2+1 |
sin3xcosx−cos2(x)sin2(x) | ||
∫ | dx | |
sin3(x)+cos3(x) |
2t(t2−1)3−4t2(t2−1)2 | (t2+1)3 | 2 | ||
∫ | dt | |||
(t2+1)4 | (t2−1)3+(2t)3 | t2+1 |
(t2−1)2(t3−2t2−t) | ||
4∫ | ||
(t2+2t−1)(t4−2t2+1−2t3+2t+4t2)(t2+1)2 |
(t2−1)2(t3−2t2−t) | ||
4∫ | dt | |
(t2+1)2(t2+2t−1)(t4−2t3+2t2+2t+1) |
y | y2 | |||
(t2−t+ | )2−((y−1)t2+(−y−2)t+ | −1) | ||
2 | 4 |
y2 | ||
4( | −1)(y−1)−(y+2)2=0 | |
4 |
y | y2 | |||
(t2−t+ | )2−((y−1)t2+(−y−2)t+ | −1) | ||
2 | 4 |
(t2−1)2(t3−2t2−t) | ||
4∫ | dt | |
(t2+1)2(t2+2t−1)(t2−(1−√3)t+2−√3)(t2−(1+√3)t+2+√3) |