| 2x | ||
∫ln2(1+x2)dx=xln2(1+x2)−∫x(2ln(1+x2)* | )dx | |
| 1+x2 |
| x2 | ||
∫ln2(1+x2)dx=xln2(1+x2)−4∫ | ln(1+x2)dx | |
| 1+x2 |
| x2+1−1 | ||
∫ln2(1+x2)dx=xln2(1+x2)−4∫ | ln(1+x2)dx | |
| 1+x2 |
| ln(1+x2) | ||
∫ln2(1+x2)dx=xln2(1+x2)−4∫ln(1+x2)dx+4∫ | dx | |
| 1+x2 |
| 2x2 | ln(1+x2) | |||
∫ln2(1+x2)dx=xln2(1+x2)−4(xln(1+x2)−∫ | dx)+4∫ | dx | ||
| x2+1 | 1+x2 |
| x2+1−1 | ln(1+x2) | |||
∫ln2(1+x2)dx=xln2(1+x2)−4xln(1+x2)+8∫ | dx+4∫ | dx | ||
| x2+1 | 1+x2 |
| ln(1+x2) | ||
∫ln2(1+x2)dx=xln2(1+x2)−4xln(1+x2)+8x−8arctgx+4∫ | dx | |
| 1+x2 |
| ln(1+x2) | ||
Jeśli chodzi o całkę ∫ | dx | |
| 1+x2 |
| 1 | ||
W zespolonych jednak ułamek | się rozkłada więc możesz go rozłożyć | |
| 1+x2 |
| 1 | ||
Rozłóż ułamek | na sumę zespolonych ułamków prostych a następnie | |
| 1+x2 |
| ln(1+x2) | ||
∫ | dx | |
| 1+x2 |
| 1 | A | B | |||
= | + | ||||
| 1+x2 | 1−ix | 1+ix |
| 1 | A(1+ix)+B(1−ix) | ||
= | |||
| 1+x2 | (1−ix)(1+ix) |
| 1 | A+B+iAx−IBx | ||
= | |||
| 1+x2 | (1−ix)(1+ix) |
| 1 | ||
A= | ||
| 2 |
| ln(1+x2) | 1 | 1 | 1 | |||||
∫ | dx= | ∫ln(1+x2)( | + | )dx | ||||
| 1+x2 | 2 | 1−ix | 1−ix |
| ln(1+x2) | 1 | 1 | 1 | |||||
∫ | dx= | ∫(ln(1+ix)+ln(1−ix))( | + | ) | ||||
| 1+x2 | 2 | 1−ix | 1+ix |
| ln(1+x2) | ||
∫ | dx= | |
| 1+x2 |
| 1 | ln(1+ix) | ln(1+ix) | ln(1−ix) | ln(1−ix) | |||||
∫( | + | + | + | )dx= | |||||
| 2 | 1−ix | 1+ix | 1−ix | 1+ix |
| 1 | ln(1+ix) | 1 | ln(1+ix) | ||||
∫ | dx+ | ∫ | dx+ | ||||
| 2 | 1−ix | 2 | 1+ix |
| 1 | ln(1−ix) | 1 | ln(1−ix) | ||||
∫ | dx+ | ∫ | dx | ||||
| 2 | 1−ix | 2 | 1+ix |
| 1 | ln(1+ix) | ||
∫ | dx | ||
| 2 | 1−ix |
| 1 | ln(1+ix) | ln(2t) | |||
∫ | dx=−i∫ | ||||
| 2 | 1−ix | 2−2t |
| 1 | ln(1+ix) | 1 | ln(2)+ln(t) | ||||
∫ | dx=− | i∫ | dt | ||||
| 2 | 1−ix | 2 | 1−t |
| ln(2) | 1 | ||
*i*ln(1−t)− | *i*dilog(t)+C | ||
| 2 | 2 |
| i | ||
= | (ln(2)ln(1−t)−dilog(t))+C | |
| 2 |
| i | 1+ix | |||
= | (ln(2)ln(1−ix)−dilog( | ))+C1 | ||
| 2 | 2 |
| 1 | ln(1+ix) | ||
∫ | dx | ||
| 2 | 1+ix |
| i | ||
dt= | dx | |
| 1+ix |
| 1 | ||
−idt= | dx | |
| 1+ix |
| i | i | |||
− | ∫tdt=− | t2+C2 | ||
| 2 | 4 |
| i | ||
=− | ln2(1+ix) | |
| 4 |
| 1 | ln(1−ix) | ||
∫ | dx | ||
| 2 | 1−ix |
| −i | ||
dt= | dx | |
| 1−ix |
| 1 | ||
idt= | dx | |
| 1−ix |
| i | i | ||
∫tdt= | t2+C3 | ||
| 2 | 4 |
| 1 | ln(1−ix) | i | |||
∫ | dx= | ln2(1−ix)+C3 | |||
| 2 | 1−ix | 4 |
| 1 | ln(1−ix) | ||
∫ | dx | ||
| 2 | 1+ix |
| ln(2t) | i | ln(2) | ln(t) | |||||
i∫ | dt= | (∫ | +∫ | dt) | ||||
| 2−2t | 2 | 1−t | 1−t |
| i | |
(−ln(2)ln(1−t)+dilog(t))+C4 | |
| 2 |
| i | 1−ix | ||
(−ln(2)ln(1+ix)+dilog( | ))+C4 | ||
| 2 | 2 |
| ln(1+x2) | 1 | |||
∫ | dx= | arctg(x)(2ln(2)+ln(1+x2)) − | ||
| 1+x2 | 2 |
| i | 1+ix | 1+ix | ||||
(dilog( | )−dilog( | )) | ||||
| 2 | 2 | 2 |
| 1+ix | 1+ix | |||
−2i(dilog( | )−dilog( | ))+C | ||
| 2 | 2 |
| ln(t) | ||
gdzie dilog(x)=∫1x | dt | |
| 1−t |
| 1+ix | 1−ix | |||
−2i(dilog( | )−dilog( | ))+C | ||
| 2 | 2 |
| ln(t) | ||
gdzie dilog(x) = ∫1x | dt | |
| 1−t |
| ln(1+x2) | ||
Co do całki ∫ | dx | |
| 1+x2 |
| arcsin(x) | ||
to otrzymałem ją gdy liczyłem całkę ∫ | dx | |
| x |
| arcsin(x) | ln(x) | |||
∫ | dx=ln(x)arcsin(x)−∫ | dx | ||
| x | √1−x2 |
| ln(x) | ||
∫ | dx | |
| √1−x2 |
| 2t | ||
x= | ||
| t2+1 |
| 2t2−t2−1 | ||
xt−1= | ||
| t2+1 |
| t2−1 | ||
xt−1= | ||
| t2+1 |
| 2(t2+1)−2t*2t | ||
dx= | dt | |
| (t2+1)2 |
| −2(t2−1) | ||
dx= | dt | |
| (t2+1)2 |
| ln(x) | 2t | t2+1 | (t2−1) | ||||
∫ | dx=−2∫ln( | ) | dt | ||||
| √1−x2 | 1+t2 | t2−1 | (t2+1)2 |
| ln(x) |
| ||||||||||||
∫ | dx=−2∫ | dt | |||||||||||
| √1−x2 | 1+t2 |
| ln(x) | ln(2) | ln(t) | ln(1+t2) | |||||
∫ | dx=−2(∫ | dt+∫ | dt−∫ | dt) | ||||
| √1−x2 | 1+t2 | 1+t2 | 1+t2 |
| ln(x) | ln(t) | ln(1+t2) | ||||
∫ | dx=−2ln(2)arctg(t)−2∫ | dt+2∫ | dt | |||
| √1−x2 | 1+t2 | 1+t2 |
| ln(t) | ||
dilog(x)=∫1x | dt | |
| 1−t |
| ln(1−t) | ||
Li2(x)=−∫0x | dt | |
| t |