| t2−1 | ||
x= | ||
| 4t |
| 2t*4t−4(t2−1) | ||
dx= | dt | |
| 16t2 |
| t2+1 | ||
dx= | dt | |
| 4t2 |
| 4t2−2(t2−1) | ||
t−2x= | ||
| 4t |
| t2+1 | ||
t−2x= | ||
| 2t |
| t2−1 | t2+1 | t2+1 | |||
∫( | )2 | dt | |||
| 4t | 2t | 4t2 |
| 1 | (t2−1)2(t2+1)2 | ||
∫ | dt | ||
| 128 | t5 |
| 1 | (t4−1)2 | ||
∫ | dt | ||
| 128 | t5 |
| 1 | (t8−2t4+1 | ||
∫ | dt | ||
| 128 | t5 |
| 1 | 1 | 1 | ||||
= | (∫t3dt+∫ | dt−2∫ | dt) | |||
| 128 | t5 | t |
| 1 | t4 | 1 | 1 | |||||
= | ( | − | )− | ln|t|+C | ||||
| 128 | 4 | 4t4 | 64 |
| 1 | t8−1 | 1 | ||||
= | ( | )− | ln|t|+C | |||
| 512 | t4 | 64 |