Z wzoru Herona obliczamy pole trójkąta
P = 84 j2
Oraz
P = 0,5 *13 r + 0,5*14 r = 13,5 r
więc
13,5 r = 84
| 2 | ||
r = 6 | ||
| 9 |
z tw. cosinusów
| 33 | ||
142 = 132+152−2*13*15*cosα → cosα = | ||
| 65 |
| 21 | ||
132 = 142+152−2*14*15*cosβ → cosβ = | ||
| 35 |
| 13−x | ||
cosα = | ||
| y |
| 14−x | ||
cosβ = | ||
| 15−y |
| 13−x | 33 | ||
= | |||
| y | 65 |
| 14−x | 21 | ||
= | |||
| 15−y | 35 |
| 28 | ||
x = | ||
| 3 |
| 65 | ||
y = | ||
| 9 |
| 11 | 65 | |||
r2 + ( | )2 = ( | )2 | ||
| 3 | 9 |
| 56 | ||
r = | ||
| 9 |
| 112 | ||
Obw = 2π*r = | π | |
| 9 |
P(deltoidu)ACBD=2P(ΔABC)
ze wzoru Herona
P(ABC)=√21*7*6*8= 84
P(deltoidu)=Pd= 168
| 168 | 56 | |||
Pd=rp ⇒ r= | = | |||
| 27 | 9 |
| 112 | ||
Lo= | π | |
| 9 |
Zauważyłem jedynie "rozlazłe"..... rozwiązanie getin