| 1 | ||
u= | (x2−1) | |
| 2 |
| 1 | ||
dv= | dx | |
| √1−x2 |
| 1 | 1 | x2−1 | ||||
∫xarcsinxdx= | (x2−1)arcsinx− | ∫ | dx | |||
| 2 | 2 | √1−x2 |
| 1 | 1 | |||
∫xarcsinxdx= | (x2−1)arcsinx+ | ∫√1−x2dx | ||
| 2 | 2 |
| x2 | ||
∫√1−x2dx=x√1−x2−∫ | dx | |
| √1−x2 |
| 1−x2−1 | ||
∫√1−x2dx=x√1−x2−∫ | dx | |
| √1−x2 |
| 1 | ||
∫√1−x2dx=x√1−x2−∫√1−x2dx+∫ | dx | |
| √1−x2 |
| 1 | ||
2∫√1−x2dx=x√1−x2+∫ | dx | |
| √1−x2 |
| 1 | ||
∫√1−x2dx= | (x√1−x2+arcsinx)+C | |
| 2 |
| 1 | 1 | 1 | ||||
∫xarcsinxdx= | (x2−1)arcsinx+ | ( | (x√1−x2+arcsinx))+C | |||
| 2 | 2 | 2 |
| 1 | 1 | 1 | ||||
∫xarcsinxdx= | (x2−1)arcsinx+ | x√1−x2+ | arcsinx+C | |||
| 2 | 4 | 4 |
| 1 | 1 | |||
∫xarcsinxdx= | (2x2−1)arcsinx + | x√1−x2 +C | ||
| 4 | 4 |