π | ||
Rozwiąż równanie |1−sin(x− | )|=1 dla x∊<0,2π> | |
4 |
1 | ||
sinx−cosx=0 ∨ sin2x= | ||
2 |
π | π | |||
x= | x= | |||
4 | 12 |
5π | 5π | |||
x= | x= | |||
4 | 12 |
13π | ||
x= | ||
12 |
17π | ||
x= | ||
12 |
π | 17π | |||
W odpowiedziach nie ma | i | i nie wiem dlaczego? Przeliczyłam to kilka razy, | ||
12 | 12 |
π | ||
|1−sin(x− | )|=1 | |
4 |
π | π | |||
1−sin(x− | )=1 lub 1−sin(x− | )=−1 | ||
4 | 4 |
π | π | |||
sin(x− | )=0 lub sin(x− | )=2 | ||
4 | 4 |
π | ||
x− | =kπ | |
4 |
π | 5π | |||
x= | lub x= | |||
4 | 4 |
π | ||
Kurcze zgubiłam 4 przed sinusem. Powinno być |1−4sin(x− | )|=1 | |
4 |
π | ||
|1−4sin(x− | )|=1 | |
4 |
π | π | |||
1−4sin(x− | )=1 lub 1−4sin(x− | )=−1 | ||
4 | 4 |
π | π | |||
4sin(x− | )=0 lub 4sin(x− | )=2 | ||
4 | 4 |
π | π | 1 | ||||
sin(x− | )=0 lub sin(x− | )= | ||||
4 | 4 | 2 |
π | π | π | π | 5π | ||||||
x− | =0 lub x− | = | +2kπ lub x− | = | +2kπ | |||||
4 | 4 | 6 | 4 | 6 |
π | 5π | 13π | ||||
x= | +kπ lub x= | +2kπ lub x= | +2kπ | |||
4 | 12 | 12 |
π | 5π | 5π | 13π | |||||
x= | lub x= | lub x= | lub x= | |||||
4 | 4 | 12 | 12 |
π | π | |||
|1−4(sinxcos | −cosxsin | )|=1 | ||
4 | 4 |
√2 | ||
|1−4( | (sinx−cosx))|=1 | |
2 |
−√2 | ||
sinx−cosx=0 lub sinx−cosx= | <−−− podnoszę do kwadratu | |
2 |
1 | ||
sinx=cosx lub sin2x= | ||
2 |
√2 | ||
a (− | )jest <0 | |
2 |