matematykaszkolna.pl
proszę o sprawdzenie anna: w trójkącie równoramiennym ABC w którym AC = BC kąt rozwarty ma miarę 1500 Na boku AB wybrano punkt D tak że ∡ DCB = 300 a) oblicz stosunek pól trójkątów ADC i DBC b) AC : CD
 PADC 
a)

= 3
 PDBC 
b) AC : CD = 1 czy to są dobre wyniki bo nie ma odpowiedzi
24 kwi 17:22
Louie314: Pierwsze się zgadza, bo to wyjdzie:
sin150 3 

=

*2=3
sin30 2 
W drugim wychodzi mi (z twierdzenia sinusów):
sin45 2 4 

=

*

=3+1
sin15 2 62 
24 kwi 17:52
Louie314:
 sin120 
W pierwszym miało być

.
 sin30 
24 kwi 17:55
anna: dziękuję
24 kwi 18:32
Mila: rysunek 1)
 
1 

a*d*sin120o
2 
 3 2 

=

*

=3
 
1 

a*d*sin30o
2 
 2 1 
2)
a d 

=

sin45o sin15o 
a sin45o 

=

=... dokończ
d sin15o 
24 kwi 18:42
anna: dziękuję
24 kwi 18:55
a@b: 2/ 4P(ΔABC)=4P=a2 ⇒ 4(P1+P2) =a2 z 1) P1=3P2 i 4P2=ad to (3+1)*ad=a2 \ : ad
 a 

=3+1
 d 
=========
24 kwi 20:38