2 | ||
u' = 1 ; v = | (x+1)3/2 | |
3 |
1 | 1 | |||
u= | (x2−1) dv = | dx | ||
2 | 2√x+1 |
1 | 1 | (x2−1) | ||||
∫x√x+1dx= | (x2−1)√x+1− | ∫ | dx | |||
2 | 4 | √x+1 |
1 | 1 | |||
∫x√x+1dx= | (x2−1)√x+1− | ∫(x−1)√x+1dx | ||
2 | 4 |
1 | 1 | 1 | ||||
∫x√x+1dx= | (x2−1)√x+1− | ∫x√x+1dx+ | ∫√x+1dx | |||
2 | 4 | 4 |
5 | 1 | 1 | |||
∫x√x+1dx= | (x2−1)√x+1+ | ∫√x+1dx | |||
4 | 2 | 4 |
2 | 1 | |||
∫x√x+1dx= | (x2−1)√x+1+ | ∫√x+1dx | ||
5 | 5 |
1 | ||
u=x+1 dv= | dx | |
2√x+1 |
(x+1) | ||
∫√x+1dx=(x+1)√x+1−∫ | dx | |
2{√x+1} |
1 | ||
∫√x+1dx=(x+1)√x+1− | ∫√x+1dx | |
2 |
3 | |
∫√x+1dx=(x+1)√x+1 | |
2 |
2 | ||
∫√x+1dx= | (x+1)√x+1 | |
3 |
2 | 2 | |||
∫x√x+1dx= | (x2−1)√x+1+ | (x+1)√x+1+C | ||
5 | 15 |