| 2 | ||
u' = 1 ; v = | (x+1)3/2 | |
| 3 |
| 1 | 1 | |||
u= | (x2−1) dv = | dx | ||
| 2 | 2√x+1 |
| 1 | 1 | (x2−1) | ||||
∫x√x+1dx= | (x2−1)√x+1− | ∫ | dx | |||
| 2 | 4 | √x+1 |
| 1 | 1 | |||
∫x√x+1dx= | (x2−1)√x+1− | ∫(x−1)√x+1dx | ||
| 2 | 4 |
| 1 | 1 | 1 | ||||
∫x√x+1dx= | (x2−1)√x+1− | ∫x√x+1dx+ | ∫√x+1dx | |||
| 2 | 4 | 4 |
| 5 | 1 | 1 | |||
∫x√x+1dx= | (x2−1)√x+1+ | ∫√x+1dx | |||
| 4 | 2 | 4 |
| 2 | 1 | |||
∫x√x+1dx= | (x2−1)√x+1+ | ∫√x+1dx | ||
| 5 | 5 |
| 1 | ||
u=x+1 dv= | dx | |
| 2√x+1 |
| (x+1) | ||
∫√x+1dx=(x+1)√x+1−∫ | dx | |
| 2{√x+1} |
| 1 | ||
∫√x+1dx=(x+1)√x+1− | ∫√x+1dx | |
| 2 |
| 3 | |
∫√x+1dx=(x+1)√x+1 | |
| 2 |
| 2 | ||
∫√x+1dx= | (x+1)√x+1 | |
| 3 |
| 2 | 2 | |||
∫x√x+1dx= | (x2−1)√x+1+ | (x+1)√x+1+C | ||
| 5 | 15 |