Można tak:
4x2+y2=b2
i x2+4y2=a2
+−−−−−−−−−−−−−−−−−
5(x2+y2)=a2+b2
5c2=a2+b2 / : a2≠0
| 1 | 1 | cos2α+sin2α+cos2α | ||||
5tg2α=1+ | 1+ | = | =2+tg2α | |||
| cos2α | cos2α | cos2α |
| √2 | ||
zatem tgα= | ||
| 2 |
| c | 1 | |||
4c2=2a2 ⇒ ( | )2= | |||
| a | 2 |
| 1 | ||
to tg2α= | i α −−ostry | |
| 2 |
| √2 | ||
tgα= | ||
| 2 |
ΔAFE: 4d2 + e2 = 9e2, stąd 4d2 = 8e2 i d2 = 2e2
ΔABF: |AB| = √ 4d2 + 4e2 = √ 12e2
ΔBDF: |BD| = √ d2 + 4e2 = √ 6e2 i |BD| = |DC|
| |AB| | √ 12e2 | √2 | ||||
tgγ = | = | = | ||||
| |BC| | 2√ 6e2 | 2 |