matematykaszkolna.pl
Geometria cmods: Dany jest trójkąt o wierzchołkach A=(−6,2) B=(4,−1) C=(−1, −4) Oblicz długości środkowych AD BE CF oraz współrzędne środka ciężkości tego trójkąta Bardzo Bardzo proszę o pomoc
19 kwi 08:50
janek191: rysunek
 3 −5 
D = (

,

)
 2 2 
 7 
E = ( −

, −1 )
 2 
 1 
F = ( −1,

)
 2 
Teraz odlicz długości odcinków : AD, BE, CF Np. I EB I = 4 − ( − 3,5) = 7,5 I CF I = 0,5 − ( − 4) = 4,5 itd.
19 kwi 10:12
apanaczi: rysunek Łatwiej tak: Środek ciężkości trójkata , to punkt przecięcia środkowych S(xS,yS)
 xA+xB+xC yA+yB+yC 
xS=

i yS=

( wzór masz w karcie wzorów
 3 3 
S(−1,−1) środkowe dzielą się w stosunku 2:1 licząc od wierzchołka to
 3 
|AD|=

|AS| , |AS|=(xS−xA)2+(yS−yA)2= .....34
 2 
 334 
|AD|

 2 
=========== pozstałe analogicznie ..........
19 kwi 10:42