| x+2k−1 | (x−1)*(2n−1) | |||
∑ | = n+ | |||
| 2k | 2n |
| x+1 | x−1 | x+1 | ||||
L= | = 1+ | = | =P | |||
| 2 | 2 | 2 |
| x+2k−1 | (x−1)*(2n−1) | |||
∑ | = n+ | |||
| 2k | 2n |
| x+2k+1−1 | (x−1)*(2n+1−1) | |||
∑ | = n+1+ | |||
| 2k+1 | 2n+1 |
| x+2k+1−1 | ||
∑ | ||
| 2k+1 |
| x+2k+1−1 | x+3 | x+2k+2−1 | ||||
∑ | = | + ∑ | ||||
| 2k+1 | 4 | 2k+2 |
| x + 2k − 1 | (x−1)(2n+1 − 1) | |||
∑k = 1n+1 | = n + 1 + | |||
| 2k | 2n+1 |
| x + 2k − 1 | ||
∑k = 1n+1 | = | |
| 2k |
| x + 2k − 1 | x + 2n+1 − 1 | |||
∑k = 1n | + | = | ||
| 2k | 2n+1 |
| (x−1)(2n − 1) | x + 2n+1 − 1 | |||
= n + | + | = | ||
| 2n | 2n+1 |