matematykaszkolna.pl
proszę o sprawdzenie anna:
 |−a|  
Jeżeli a jest liczbą dodatnią i b =

* a3 to
 a 
A) b < 0 B) b > 0 C) b = −a D) b = −a3 dałam odpowiedź C
9 kwi 10:59
wredulus_pospolitus:
 |−a| 
b =

*a3 = |−a|*a2 > 0
 a 
w życiu b = −a nie jest poprawną odpowiedzią
9 kwi 11:01
ite:
 |−a| 
dla a>0

=1
 a 
9 kwi 11:02
wredulus_pospolitus: dodatkowo masz informację, że a > 0
 dodatnia 
więc jak może być b = −a czyli b < 0 skoro masz b =

* dodatnia
 dodatnia 
9 kwi 11:03
ICSP:
 |−a| 
Jeżeli tylko jedna odpowiedź jest poprawna to informacja b =

*a3 jest całkowicie
 a 
zbędna. Odpowiedzi A) i B) wzajemnie siebie wykluczają co oznacza, że jedna z nich musi być poprawna. Gdyby C) była prawidłowa to oznaczałoby, że a > 0 i b < 0 czyli również pasowałaby odpowiedź A. Dlatego B jest prawidłowa.
9 kwi 11:14
anna: dziękuję zadanie jest z próbnej matury INFO zad 9
9 kwi 12:16
anna: Ostrosłup rozcięto płaszczyzną równoległą do płaszczyzny podstawy na dwie bryły, przy czym jedna z nich ma o 12 krawędzi więcej od drugiej. Ile wierzchołków miał ostrosłup przed rozcięciem? A) 12 B) 13 C) 26 D) 24
9 kwi 13:14
wredulus_pospolitus: narysuj sobie ostrosłup o podstawie czworokąta ... przetnij go płaszczyzną równoległą do podstawy. W efekcie otrzymasz mniejszy ostrosłup także o podstawie czworokąta oraz 'ścięty' ostrosłup o dwóch podstawach czworokątach. Liczba krawędzi to: 4+4 = 8 vs 4 + 4 + 4 = 12 Zrób to samo z ostrosłupem o innej podstawie (trójkąt albo pięciokąt) zauważ zależność
9 kwi 13:17
wredulus_pospolitus: albo już na tym etapie zauważ, że ścięty ostrosłup będzie miał o tyle krawędzi więcej o ile ma krawędzi podstawa stąd podstawa musi mieć 12 krawędzi (12 wierzchołków) ... więc ostrosłup musiał mieć 12+1 wierzchołków
9 kwi 13:18
anna: dziękuję
9 kwi 14:25