W trójkącie prostokątnym ABC przyprostokątne AC i AB mają długość odpowiednio równą: 8 i 12. Na
przeciwprostokątnej CB obrano punkt D tak, że |∠ACD|=|∠ACB|. Oblicz pole trójkąta ADC.
| 12 | 3 | h | ||||
tgα = | = | = | ||||
| 8 | 2 | x |
| 2 | ||
x = | h | |
| 3 |
| h | ||
sinα = | ||
| 8 |
| h | ||
cosα = | ||
| 12 |
| h2 | h2 | 576 | 24√13 | ||||
+ | = 1 ⇒ h2 = | ⇒ h = | |||||
| 64 | 144 | 13 | 13 |
| 2 | 24√13 | 16√13 | ||||
x = | * | = | ||||
| 3 | 13 | 13 |
| 1 | 384 | 7 | ||||
PADC = | * 2x * h = | = 29 | ||||
| 2 | 13 | 13 |
| 8*12 | 24√13 | |||
z porównania wzorów na pole ABC −> h = | = | |||
| 4√13 | 13 |
| 2 | 2 | 2 | 242 | 384 | ||||||
x = | h −−> PACD = x*h = | h2 = | * | = | ||||||
| 3 | 3 | 3 | 13 | 13 |
| 1 | 1 | |||
P = | *8*12 = | *4√13*h | ||
| 2 | 2 |
| 24√13 | ||
h = | ||
| 13 |
| h | 12 | ||
= | |||
| x | 8 |
| 2 | 16√13 | |||
x = | h = | |||
| 3 | 13 |
| 1 | 16*24*13 | 16*24 | ||||
P = | *2x*h = | = | ||||
| 2 | 13*13 | 13 |
Jeszcze raz np: tak
P(ABC)=48
P1=P(ACE) , P2=P(AEB)
P1+P2=48
Z podobieństwa trójkatów ACE i AEB z cechy (kkk)
| 8 | 2 | P1 | 4 | 4 | ||||||
w skali k= | = | ⇒ | =k2= | ⇒ P1= | P2 | |||||
| 12 | 3 | P2 | 9 | 9 |
| 13 | 4*48 | |||
to | P1=48 ⇒ P1= | |||
| 4 | 13 |
| 8*48 | 7 | |||
P(ACD)= | =29 | |||
| 13 | 13 |