1 | 1 | |||
P(ARP) = | P oraz P(AOC) = | P. | ||
k2 | n2 |
1 | 1 | ||
= 1− | |||
n | k |
1 | 2 | 1 | |||
= 1 − | + | ||||
n2 | k | k2 |
1 | 1 | 1 | 1 | |||||
P(RBOP) = P − | P− | P = P(1− | − | ) = | ||||
k2 | n2 | k2 | n2 |
1 | 2 | 1 | 2 | 2 | ||||||
P(1− | −1 + | − | ) = P( | − | ) | |||||
k2 | k | k2 | k | k2 |
2 | 2 | |||
Szukamy największej wartości funkcji f(k) = | − | |||
k | k2 |
1 | ||
Podstawmy | = t, wówczas mamy f(t) = 2t−2t2 = g(t) | |
k |
−2 | ||
Maksimum funkcji t wypada w wierzchołku t = | = {1}{2} i wynosi ono | |
2*(−2) |
1 | 1 | 1 | ||||
g( | ) =1 1− | = | ||||
2 | 2 | 2 |
1 | 1 | ||
= | ⇒ k = 2 = n | ||
k | 2 |
b−y | b | |||
ΔCDP∼ΔABC ⇔ | = | |||
x | c |
(b−y)*c | ||
x= | ||
b |
(b−y)*c | ||
PAEPD=P(y)= | *y*sinα | |
b |
c*sinα | ||
P(y)= | *(by−y2) | |
b |
−b | 1 | |||
yw= | = | b | ||
−2 | 2 |
1 | ||
y= | b | |
2 |
1 | ||
|CD|= | b | |
2 |
CD | CP | ||
=1:1 analogicznie | =1:1 | ||
DA | PB |
5^2 | 52 |
2^{10} | 210 |
a_2 | a2 |
a_{25} | a25 |
p{2} | √2 |
p{81} | √81 |
Kliknij po więcej przykładów | |
---|---|
Twój nick | |