ale w połowie boku musi być ten punkt jeśli odpowiedź cię interesuje
ΔABC ≡ ΔARP (w skali k) oraz ΔABC ≡ ΔPOC (w skali n). Niech P = P(ABC)
| 1 | 1 | |||
P(ARP) = | P oraz P(AOC) = | P. | ||
| k2 | n2 |
| 1 | 1 | ||
= 1− | |||
| n | k |
| 1 | 2 | 1 | |||
= 1 − | + | ||||
| n2 | k | k2 |
| 1 | 1 | 1 | 1 | |||||
P(RBOP) = P − | P− | P = P(1− | − | ) = | ||||
| k2 | n2 | k2 | n2 |
| 1 | 2 | 1 | 2 | 2 | ||||||
P(1− | −1 + | − | ) = P( | − | ) | |||||
| k2 | k | k2 | k | k2 |
| 2 | 2 | |||
Szukamy największej wartości funkcji f(k) = | − | |||
| k | k2 |
| 1 | ||
Podstawmy | = t, wówczas mamy f(t) = 2t−2t2 = g(t) | |
| k |
| −2 | ||
Maksimum funkcji t wypada w wierzchołku t = | = {1}{2} i wynosi ono | |
| 2*(−2) |
| 1 | 1 | 1 | ||||
g( | ) =1 1− | = | ||||
| 2 | 2 | 2 |
| 1 | 1 | ||
= | ⇒ k = 2 = n | ||
| k | 2 |
DP||AB i PE||AC
PAEPD=x*y*sinα
1)
| b−y | b | |||
ΔCDP∼ΔABC ⇔ | = | |||
| x | c |
| (b−y)*c | ||
x= | ||
| b |
| (b−y)*c | ||
PAEPD=P(y)= | *y*sinα | |
| b |
| c*sinα | ||
P(y)= | *(by−y2) | |
| b |
| −b | 1 | |||
yw= | = | b | ||
| −2 | 2 |
| 1 | ||
y= | b | |
| 2 |
| 1 | ||
|CD|= | b | |
| 2 |
| CD | CP | ||
=1:1 analogicznie | =1:1 | ||
| DA | PB |